Advertisement

Ecotoxicological Risk Assessment of E-waste Pollution

  • Biljana BalabanovaEmail author
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 57)

Abstract

Electronics have unique characteristics and can be a source of significant environmental degradation, making these devices problematic toxic waste. Over the past few decades, e-waste management has not been well organized, meaning that the human population and the environment have suffered the consequences of improper treatment of e-waste. For instance, much ends up in landfill, where it can cause leaching of hazardous materials, mercury vaporization, and fires, which lead to atmospheric pollution and toxic ash residues. This study reviews recent reports on human exposure to e-waste, with particular focus on exposure routes and toxicities of humans. Specific e-associated chemical elements and compounds exist in the form of components of the equipment, target. Pieces of evidence that associate e-waste exposure with human health effects are assessed. The role of toxic heavy metals (lead, cadmium, chromium, and mercury) and organic pollutants (polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated biphenyls (PBBs), polyhalogenated aromatic hydrocarbons (PHAHs), and biphenyl A (BPA)) on human health is also briefly discussed.

Keywords

Toxic substances Electronic waste Environmental pollution Toxicological effects 

References

  1. Behnisch PA, Hosoe K, Sakai S (2001) Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology. Environ Int 27:413–439PubMedCrossRefGoogle Scholar
  2. Behnisch PA, Hosoe K, Sakai S (2003) Brominated dioxin-like compounds: in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds. Environ Int 29:861–877PubMedCrossRefGoogle Scholar
  3. Bellinger DC, Trachtenberg F, Barregard L, Tavares M, Cernichiari E, Daniel D et al (2006) Neuropsychological and renal effects of dental amalgam in children: a randomized clinical trial. JAMA 295:1775–1783PubMedCrossRefGoogle Scholar
  4. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512PubMedCrossRefGoogle Scholar
  5. Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB (2009) Cadmium—a metallohormone? Toxicol Appl Pharmacol 238:266–271PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chang LW, Magos L, Suzuki T (1996) Toxicology of metals. CRC, Boca Raton. FL, USAGoogle Scholar
  7. Chen TL, Wise SS, Kraus S, Shaffiey F, Levine K, Thompson DW, Romano T, O’Hara T, Wise JP (2009) Particulate hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and skin fibroblasts. Environ Mol Mutagenesis 50:387–393CrossRefGoogle Scholar
  8. Chen A, Dietrich KN, Huo X, Ho S (2011) Developmental neurotoxicants in e-waste: an emerging health concern. Environ Health Perspect 119(4):431–438CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662PubMedCrossRefGoogle Scholar
  10. Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20(9):439–451PubMedCrossRefPubMedCentralGoogle Scholar
  11. De Flora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds: a review. Mutat Res 238:99–172PubMedCrossRefPubMedCentralGoogle Scholar
  12. De Mattia G, Bravi MC, Laurenti O, De Luca O, Palmeri A, Sabatucci A, Mendico G, Ghiselli A (2004) Impairment of cell and plasma redox state in subjects professionally exposed to chromium. Am J Ind Med 46(2):120–125PubMedCrossRefPubMedCentralGoogle Scholar
  13. DeRouen TA, Martin MD, Leroux BG, Townes BD, Woods JS, Leitao J et al (2006) Neurobehavioral effects of dental amalgam in children: a randomized clinical trial. JAMA 295:1784–1792PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dietrich KN (2010) Environmental toxicants. In: Yeates KO, Ris MD, Taylor HG, Pennington BF (eds) Pediatric neuropsychology, 2nd edn. Guilford Press, New York, pp 211–264Google Scholar
  15. Flora SJS, Flora GJS, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Cascas SB, Sordo J (eds) Lead: chemistry, analytical aspects, environmental impacts and health effects. Elsevier Publication, NetherlandsGoogle Scholar
  16. Frazzoli C, Orisakwe OE, Dragone R, Mantovani A (2010) Diagnostic health risk assessment of electronic waste on the general population in developing countries scenarios. Environ Impact Assess Rev 30:388–399CrossRefGoogle Scholar
  17. Grant K, Goldizen FC, Sly PD, Brune M-N, Neira M, van den Berg M, Norman RE (2013) Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health 1:350–361CrossRefGoogle Scholar
  18. Guo Y, Huang C, Zhang H, Dong Q (2009) Heavy metal contamination from electronic waste recycling at Guiyu, Southeastern China. J Environ Qual 38(4):1617–1626PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hertz-Picciotto I (2000) The evidence that lead increases the risk for spontaneous abortion. Am J Ind Med 38:300–309PubMedCrossRefPubMedCentralGoogle Scholar
  20. Holmes P, Hames KAF, Levy LS (2009) Is low-level mercury exposure of concern to human health? Sci Total Environ 408:171–182PubMedCrossRefGoogle Scholar
  21. Hutzinger O, Thoma H (1987) Polybrominated dibenzo-p-dioxins and dibenzofurans: the flame retardant issue. Chemosphere 16:1877–1880CrossRefGoogle Scholar
  22. Julander A, Lundgren L, Skare L, Grandér M, Palm B, Vahter M, Lidén C (2014) Formal recycling of e-waste leads to increased exposure to toxic metals: an occupational exposure study from Sweden. Environ Int 73:243–251CrossRefGoogle Scholar
  23. Kaul B, Sandhu RS, Depratt C, Reyes F (1999) Follow-up screening of lead-poisoned children near an auto battery recycling plant, Haina, Dominican Republic. Environ Health Perspect 107(11):917–920PubMedPubMedCentralCrossRefGoogle Scholar
  24. Leaner VD, Donninger H, Birrer MJ (2007) Transcription factors as targets for cancer therapy: AP-1 a potential therapeutic target. Curr Cancer Therap Rev 3:1–6CrossRefGoogle Scholar
  25. Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942PubMedCrossRefGoogle Scholar
  26. Litvak P, Slavkovich V, Liu X, Popovac D, Preteni E, Capuni-Paracka S, Hadzialjevic S, Lekic V, Lolacono N, Kline J, Graziano J (1998) Hyperproduction of erythropoietin in nonanemic lead-exposed children. Environ Health Perspect 106(6):361–364CrossRefGoogle Scholar
  27. Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmocol 238(3):192–200CrossRefGoogle Scholar
  28. Pellerin C, Booker SM (2000) Reflections on hexavalent chromium: health hazards of an industrial heavyweight. Environ Health Perspect 108:A402–A407PubMedPubMedCentralCrossRefGoogle Scholar
  29. Pilsner JR, Hu H, Ettinger A, Sanchez BN, Wright RO, Cantonwine D et al (2009) Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect 117:1466–1471PubMedPubMedCentralCrossRefGoogle Scholar
  30. Pinheiro MCN, Macchi BM, Vieira JLF, Oikawa T, Amoras WW, Santos EO (2008) Mercury exposure and antioxidant defenses in women: a comparative study in the Amazon. Environ Res 107:53–59PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ramesh BB, Parande AK, Ahmed BC (2007) Electrical and electronic waste: a global environmental problem. Waste Manag Res 25:307–318CrossRefGoogle Scholar
  32. Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191PubMedPubMedCentralCrossRefGoogle Scholar
  33. Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24:15–45PubMedPubMedCentralCrossRefGoogle Scholar
  34. Sarkar BA (2005) Mercury in the environment: effects on health and reproduction. Rev Environ Health 20:39–56PubMedPubMedCentralGoogle Scholar
  35. Shaikh ZA, Vu TI, Zaman K (1999) Oxidative stress as a mechanism of chronic cadmium-induced hepatoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol 154:256–263PubMedCrossRefPubMedCentralGoogle Scholar
  36. Sjodin A, Wong LY, Jones RS, Park A, Zhang Y, Hodge C et al (2008) Serum concentrations of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyl (PBB) in the United States population: 2003–2004. Environ Sci Technol 42:1377–1384PubMedCrossRefPubMedCentralGoogle Scholar
  37. Sthiannopkao S, Wong MH (2013) Handling e-waste in developed and developing countries: initiatives, practices, and consequences. Sci Total Environ 463–464:1147–1153CrossRefGoogle Scholar
  38. Tchounwou PB, Ayensu WK, Ninashvilli N, Sutton D (2003) Environmental exposures to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175PubMedCrossRefPubMedCentralGoogle Scholar
  39. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology. Experientia Supplementum, vol 101. Springer, BaselGoogle Scholar
  40. UN Environment Programme (2007) E-waste, volume 1: Inventory assessment manual. UN Environment Programme, NairobiGoogle Scholar
  41. United States Environmental Protection Agency (2002) Lead compounds. Technology transfer network-air toxics website. http://www.epa.gov/cgi-bin/epaprintonly.cgi
  42. US EPA (1998) Guidelines for ecological risk assessment. EPA/630/R-95/002F, final report, Washington, DCGoogle Scholar
  43. Valko M, Izakovic M, Mazur M, Rhodes CJ, Tesler J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:79–110CrossRefGoogle Scholar
  44. Valko M, Rhodes CJ, Monocol J, Izakovic-Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40PubMedPubMedCentralCrossRefGoogle Scholar
  45. Van den Berg M, Birnbaum LS, Denison M et al (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93(2):223–241PubMedPubMedCentralCrossRefGoogle Scholar
  46. Velma V, Vutukuru SS, Tchounwou PB (2009) Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev Environ Health 24(2):129–145PubMedPubMedCentralCrossRefGoogle Scholar
  47. Wang S, Shi X (2001) Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 222:3–9PubMedCrossRefGoogle Scholar
  48. Widmera R, Oswald-Krapf H, Sinha-Khetriwalb D, Schnellmannc M, Bonia H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458CrossRefGoogle Scholar
  49. Yedjou CG, Milner J, Howard C, Tchounwou PB (2010) Basic apoptotic mechanisms of lead toxicity in human leukemia (HL-60) cells. Int J Environ Res Public Health 7(5):2008–2017PubMedPubMedCentralCrossRefGoogle Scholar
  50. Zahir A, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360PubMedCrossRefPubMedCentralGoogle Scholar
  51. Zheng J, Luo XJ, Yuan JG, He LY, Zhou YH, Luo Y et al (2011) Heavy metals in hair of residents in an e-waste recycling area, south China: contents and assessment of bodily state. Arch Environ Contam Toxicol 61(4):696–703CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of AgricultureUniversity “Goce Delčev”ŠtipNorth Macedonia

Personalised recommendations