Advertisement

Pathophysiology of ctDNA Release into the Circulation and Its Characteristics: What Is Important for Clinical Applications

  • Nickolas PapadopoulosEmail author
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 215)

Abstract

The clinical implications of being able to accurately detect tumor-derived DNA in the circulation, termed circulating tumor DNA (ctDNA), could be enormous. Already, a plethora of clinical applications is under validation that include detection of minimal residual disease and predicting recurrence, monitoring response and resistance to treatment, identifying targets for therapies, and early detection. ctDNA is only a fraction of the total cell-free DNA (cfDNA) which confounds its detection and sometimes conceals its properties. To use ctDNA as a cancer biomarker with confidence, we need to understand its nature. Its characteristics, including size, half-life, and amount, are critical for the development of tests for its detection and discrimination from the rest of the cfDNA. Technological advances have enabled the detection and quantification of individual fragments of cfDNA, which is pivotal for clinical applications. Understanding the causes, the source of and the mechanisms of release of ctDNA are important for the interpretation of test results. Despite the many advances in understanding the nature and biology of ctDNA, we do not yet have a clear appreciation of the processes that govern its presence and levels in the circulation. ctDNA is not detectable in the blood of every cancer patient, and there is not a directly proportional relationship to tumor type, size, or stage. It is not clear if the lack of correlation with these specific clinical parameters is strictly due to technical or biological challenges. Better understanding of the pathophysiology of ctDNA is therefore important for the improvement of clinical applications and interpretation of their results.

References

  1. Abbosh C, Birkbak NJ, Wilson GA et al (2017) Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545:446–451PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anglesio MS, Papadopoulos N, Ayhan A et al (2017) Cancer-associated mutations in endometriosis without cancer. N Engl J Med 376:1835–1848PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anker P, Stroun M, Maurice PA (1975) Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res 35:2375–2382PubMedPubMedCentralGoogle Scholar
  4. Antonatos D, Patsilinakos S, Spanodimos S et al (2006) Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann N Y Acad Sci 1075:278–281PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ (2018) The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc 93:1649–1683PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:ra224Google Scholar
  7. Breitbach S, Tug S, Simon P (2012) Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med 42:565–586PubMedCrossRefPubMedCentralGoogle Scholar
  8. Campello YV, Ikuta N, Brondani da Rocha A et al (2007) Role of plasma DNA as a predictive marker of fatal outcome following severe head injury in males. J Neurotrauma 24:1172–1181CrossRefGoogle Scholar
  9. Chan KCA, Jiang P, Zheng YW et al (2013a) Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 59:211–224PubMedCrossRefGoogle Scholar
  10. Chan KCA, Jiang P, Chan CW et al (2013b) Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A 110:18761–18768PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chang HW, Lee SM, Goodman SN et al (2002) Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer. J Natl Cancer Inst 94:1697–1703PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chaudhuri AA, Chabon JJ, Lovejoy AF et al (2017) Early Detection of molecular residual disease in localized ling cancer by circulating tumor DNA profiling. Cancer Discov 7:1394–1403PubMedPubMedCentralCrossRefGoogle Scholar
  13. Choi JJ, Reich CF, Pisetsky DS (2005) The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology 115:55–62PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cohen JD, Javed AA, Thoburn C et al (2017) Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A 114(38):10202–10207PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cohen JD, Li L, Wang Y et al (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359:926–930PubMedPubMedCentralCrossRefGoogle Scholar
  16. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood Nature Reviews. Clin Oncol 10:472–484Google Scholar
  17. Dawson S-J, Tsui DWY, Murtaza M et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199–1209CrossRefGoogle Scholar
  18. Diaz LA Jr, Williams RT, Wu J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540PubMedPubMedCentralCrossRefGoogle Scholar
  19. Diehl F, Li M, Dressman D et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102:16368–16373PubMedPubMedCentralCrossRefGoogle Scholar
  20. Diehl F, Schmidt K, Choti MC et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990PubMedCrossRefGoogle Scholar
  21. Douville C, Springer S, Kinde I et al (2018) Detection of aneuploidy in patients with cancer through amplification of long interspersed nucleotide elements (LINEs). Proc Natl Acad Sci U S A. 115:1871–1876PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dressman D, Yan H, Traverso G et al (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 100:8817–8822PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dwivedi DJ, Toltl LJ, Swystun LL et al (2012) Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care 16:R151PubMedPubMedCentralCrossRefGoogle Scholar
  24. Emlen W, Mannik M (1978) Kinetics and mechanisms for removal of circulating single-stranded DNA in mice. J Exp Med 147:684–699PubMedCrossRefPubMedCentralGoogle Scholar
  25. Forshew T, Murtaza M, Parkinson C et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4:136ra68CrossRefGoogle Scholar
  26. Genovese G, Kähler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancerrisk inferred from blood DNA sequence. N Engl J Med 371:2477–2487PubMedPubMedCentralCrossRefGoogle Scholar
  27. Giacona MB, Ruben GC, Iczkowski KA et al (1998) Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 17:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  28. Guibert N, Hu Y, Feeney N et al (2018) Amplicon- based next- generation sequencing of plasma cell- free DNA for detection of driver and resistance mutations in advanced non- small cell lung cancer. Ann Oncol 29:1049–1055PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hao X, Luo H, Krawczyk M et al (2017) DNA methylation markers for diagnosis and prognosis of common cancers. PNAS 114:7414–7419PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hoang ML, Kinde I, Tomasetti C et al (2016) Proc Natl Acad Sci U S A 113:9846–9851PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jahr S, Hentze H, Englisch S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665Google Scholar
  32. Jiang P, Lo YMD (2016) The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genet 32:360–371PubMedCrossRefGoogle Scholar
  33. Jiang P, Chan CW, Chan KC et al (2015) Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A 112:E1317–E1325PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kim J-E, Lee N, Gu J-Y et al (2015) Circulating levels of DNA-histone complex and dsDNA are independent prognostic factors of disseminated intravascular coagulation. Thromb Res 135:1064–1069PubMedCrossRefGoogle Scholar
  35. Kinde I, Wu J, Papadopoulos N et al (2011) Proc Natl Acad Sci USA 108:9530–9535PubMedCrossRefGoogle Scholar
  36. Kuang Y, Rogers A, Yeap B et al (2009) Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non–small cell lung cancer. Clin Cancer Res 15:2630–2636PubMedPubMedCentralCrossRefGoogle Scholar
  37. Lanman RB, Mortimer SA, Zill OA et al (2015) Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS ONE 10:e0140712PubMedPubMedCentralCrossRefGoogle Scholar
  38. Leary RJ, Kinde I, Diehl F et al (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2:20ra14PubMedPubMedCentralCrossRefGoogle Scholar
  39. Leary RJ, Sausen M, Kinde I et al (2012) Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl Med. 4:162ra154PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lehmann-Werman R, Neiman D, Zemmour H et al (2016) Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci U S A 113:E1826–E1834PubMedPubMedCentralCrossRefGoogle Scholar
  41. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650PubMedPubMedCentralGoogle Scholar
  42. Li H, Fan X, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Viochem 101:805–815CrossRefGoogle Scholar
  43. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lo YM, Tein MS, Lau TK et al (1998a) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62:768–775PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lo YM, Tein MS, Pang CC et al (1998b) Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet 351:1329–1330PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lo YM, Zhang J, Leung TN et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lo YM, Chan KC, Sun H et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2:61ra91PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lui YY, Chil KW, Chiu RW et al (2002) Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem 48:421–427PubMedPubMedCentralGoogle Scholar
  49. Mandel P, Metais P (1948) Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil 142:241–243PubMedPubMedCentralGoogle Scholar
  50. Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536PubMedPubMedCentralCrossRefGoogle Scholar
  51. Morbelli S, Alama A, Ferrarazzo G et al (2017) Circulating tumor DNA reflects tumor metabolism rather than tumor burden in chemotherapy-naïve patients with advanced non-small cell lung cancer: 18F-FDG PET/CT study. J Nucl Med 58:1764–1769PubMedCrossRefPubMedCentralGoogle Scholar
  52. Mouliere F, Robert B, Arnau Peyrotte E et al (2011) High fragmentation characterizes tumour-derived circulating DNA. PLoS ONE 6:e23418PubMedPubMedCentralCrossRefGoogle Scholar
  53. Mouliere F, Messaoudi E, Gongara C et al (2013) Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol. 6:319–328PubMedPubMedCentralCrossRefGoogle Scholar
  54. Murtaza M, Dawson SD, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112CrossRefGoogle Scholar
  55. Newman AM, Bratman SV, To J et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20:548–554PubMedPubMedCentralCrossRefGoogle Scholar
  56. Newman AM, Lovejoy AF, Klass DM et al (2016) Integarated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol 34:547–555PubMedPubMedCentralCrossRefGoogle Scholar
  57. Nikolaev S, Vetiska S, Bonilla X et al (2018) Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med 378:250–261PubMedCrossRefPubMedCentralGoogle Scholar
  58. Pantel K, Alix-Panabières C (2017) Tumour microenvironment: informing on minimal residual disease in solid tumours. Nat Rev Clin Oncol 14:325–326PubMedCrossRefPubMedCentralGoogle Scholar
  59. Park J, Wysocki RW, Amoozga Z et al (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8:361ra138PubMedPubMedCentralCrossRefGoogle Scholar
  60. Phallen J, Sausen M, Adleff V et al (2017) Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 9:eaan2415PubMedPubMedCentralCrossRefGoogle Scholar
  61. Schwarzenbach H, Hoon DSB, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437CrossRefGoogle Scholar
  62. Sidransky D, von Eschenbach A, Tsai YC et al (1991) Identification of p53 gene mutations in bladder cancers and urine samples. Science 252:706–709PubMedCrossRefPubMedCentralGoogle Scholar
  63. Snyder MW, Kircher M, Hill AJ et al (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164:57–68PubMedPubMedCentralCrossRefGoogle Scholar
  64. Sozzi G, Conte D, Mariani L et al (2001) Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res 61:4675–4678PubMedPubMedCentralGoogle Scholar
  65. Stroun M, Anker P, Maurice P (1989) Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46:318–322PubMedCrossRefPubMedCentralGoogle Scholar
  66. Sun K, Jiang P, Chan KC et al (2015) Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A 112:E5503–E5512PubMedPubMedCentralCrossRefGoogle Scholar
  67. Swystun LL, Mukherjee S, Liaw PC (2011) Breast cancer chemotherapy induces the release of cell free DNA, a novel procoagulant stimulus. J Thromb Haemost 9:2313–2321PubMedCrossRefPubMedCentralGoogle Scholar
  68. Taniguchi K, Uchida J, Nishino K et al (2011) Quantitative detection of EGFR mutations in circulating tumor DNAderived from lung adenocarcinomas. Clin Cancer Res 17:7808–7815CrossRefGoogle Scholar
  69. Thierry AR, El Messaoudi S, Gahan PB et al (2016) Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 35:347–376PubMedPubMedCentralCrossRefGoogle Scholar
  70. Tie J, Wang Y, Tomasetti C et al (2016) Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 8:346ra92Google Scholar
  71. To EWH, Chan KC, Leung SF et al (2003) Rapid clearance of plasma Epstein-Barr virus DNA after surgical treatment of nasopharyngeal carcinoma. Clin Cancer Res 9:3254–3259PubMedPubMedCentralGoogle Scholar
  72. Vogelstein B, Kinzler K (1999) Digital PCR. Proc. Natl Acad Sci U S A 96:9236–9241 (1999)CrossRefGoogle Scholar
  73. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW et al (2013) Cancer genome landscapes. Science 339:1546–58PubMedPubMedCentralCrossRefGoogle Scholar
  74. von Bubnoff N (2017) Liquid biopsy: approaches to dynamic genotyping in cancer. Oncology Research and Treatment 40:409–419CrossRefGoogle Scholar
  75. Wan JCM, Massie C, Garcia-Corbacho J et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17:223–238PubMedPubMedCentralCrossRefGoogle Scholar
  76. Wang Y, Springe S, Mulvey CL et al (2015a) Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med 7:293ra104Google Scholar
  77. Wang Y, Springer S, Zhang M, McMahon KW, Kinde I, Dobbyn L, Ptak J, Brem H, Chaichana K, Gallia GL et al (2015b) Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A 112:9704–9709PubMedPubMedCentralCrossRefGoogle Scholar
  78. Wang Y, Li L, Douville C et al (2018) Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci Transl Med 10:eaap8793PubMedPubMedCentralCrossRefGoogle Scholar
  79. Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations