Advertisement

Clinical Applications of Circulating Tumor Cells in Breast Cancer

  • Erin F. Cobain
  • Costanza Paoletti
  • Jeffrey B. Smerage
  • Daniel F. HayesEmail author
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 215)

Abstract

The development of metastatic disease accounts for the vast majority of cancer-related deaths in solid tumor malignancies. Distant metastases primarily develop as a result of tumor cell dissemination through the circulatory system.

Keywords

Circulating tumor cell (CTC) Breast cancer Liquid biopsy Tumor marker 

References

  1. Alix-Panabieres C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59:110–118CrossRefGoogle Scholar
  2. Bidard FC, Mathiot C, Degeorges A et al (2010) Clinical value of circulating endothelial cells and circulating tumor cells in metastatic breast cancer patients treated first line with bevacizumab and chemotherapy. Ann Oncol 21:1765–1771CrossRefGoogle Scholar
  3. Bidard FC, Peeters DJ, Fehm T et al (2014) Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 15:406–414CrossRefGoogle Scholar
  4. Bidard FC, Michiels S, Mueller V et al (2016) IMENEO: International MEta-analysis of circulating tumor cell detection in early breast cancer patients treated by NEOadjuvant chemotherapy. In: Paper presented at: 39th San Antonio breast cancer symposium, Dec 2016, San Antonio, TXGoogle Scholar
  5. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564CrossRefGoogle Scholar
  6. Chu D, Paoletti C, Gersch C et al (2016) ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients. Clin Cancer Res 22:993–999CrossRefGoogle Scholar
  7. Coget J, Blanchard F, Lamy A et al (2012) Cytologic and molecular characterizations of CTC detected in patients with metastatic colorectal carcinomas. J Clin Oncol 30:485CrossRefGoogle Scholar
  8. Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791CrossRefGoogle Scholar
  9. Dawson SJ, Rosenfeld N, Caldas C (2013) Circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 369:93–94CrossRefGoogle Scholar
  10. de Bono JS, Attard G, Adjei A et al (2007) Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor. Clin Cancer Res 13:3611–3616CrossRefGoogle Scholar
  11. De Luca F, Rotunno G, Salvianti F et al (2016) Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget 7:26107Google Scholar
  12. Early Breast Cancer Trialists’ Collaborative G, Davies C, Godwin J et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771–84Google Scholar
  13. Fehm T, Hoffmann O, Aktas B et al (2009) Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res 11:R59CrossRefGoogle Scholar
  14. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRefGoogle Scholar
  15. Ghebeh H, Mohammed S, Al-Omair A et al (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8:190–198CrossRefGoogle Scholar
  16. Giordano A, Egleston BL, Hajage D et al (2013) Establishment and validation of circulating tumor cell-based prognostic nomograms in first-line metastatic breast cancer patients. Clin Cancer Res 19:1596–1602CrossRefGoogle Scholar
  17. Hayes DF, Cristofanilli M, Budd GT et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12:4218–4224CrossRefGoogle Scholar
  18. Ignatiadis M, Xenidis N, Perraki M et al (2007) Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol 25:5194–5202CrossRefGoogle Scholar
  19. Janni WJ, Rack B, Terstappen LW et al (2016) Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res 22:2583–2593CrossRefGoogle Scholar
  20. Kallergi G, Mavroudis D, Georgoulias V et al (2007) Phosphorylation of FAK, PI-3K, and impaired actin organization in CK-positive micrometastatic breast cancer cells. Mol Med 13:79–88CrossRefGoogle Scholar
  21. Lindstrom LS, Karlsson E, Wilking UM et al (2012) Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol 30:2601–2608CrossRefGoogle Scholar
  22. Liu MC, Shields PG, Warren RD et al (2009) Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol 27:5153–5159CrossRefGoogle Scholar
  23. Lucci A, Hall CS, Lodhi AK et al (2012) Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 13:688–695CrossRefGoogle Scholar
  24. Mathew A, Brufsky AM, Davidson NE (2015) Can circulating tumor cells predict resistance in metastatic breast cancer? Clin Cancer Res 21:2421–2423CrossRefGoogle Scholar
  25. Mazel M, Jacot W, Pantel K et al (2015) Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol 9:1773–1782CrossRefGoogle Scholar
  26. Meng S, Tripathy D, Shete S et al (2004) HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A 101:9393–9398CrossRefGoogle Scholar
  27. Moja L, Tagliabue L, Balduzzi S et al (2012) Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev 4:CD006243Google Scholar
  28. Nanda R, Chow LQ, Dees EC et al (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol 34:2460–2467CrossRefGoogle Scholar
  29. Nygaard AD, Garm Spindler KL, Pallisgaard N et al (2013) The prognostic value of KRAS mutated plasma DNA in advanced non-small cell lung cancer. Lung Cancer 79:312–317CrossRefGoogle Scholar
  30. Paoletti C, Hayes DF (2016) Circulating tumor cells. Adv Exp Med Biol 882:235–258CrossRefGoogle Scholar
  31. Paoletti C, Smerage J, Hayes DF (2012) Circulating tumor cells as a marker of prognosis. Princip Prac Oncol 1–8Google Scholar
  32. Paoletti C, Muniz MC, Thomas DG et al (2015) Development of circulating tumor cell-endocrine therapy index in patients with hormone receptor-positive breast cancer. Clin Cancer Res 21:2487–2498CrossRefGoogle Scholar
  33. Paoletti C, Regan MM, Liu MC, Marcom PK, Hart LL, Smith II JW, Tedesco KL, Amir E, Krop IE, DeMichele AM, Goodwin PJ, Block M, Aung K, Cannell EM, Darga EP, Baratta PJ, Brown ME, McCormack RT, Hayes DF (2016) Circulating tumor cell number and CTC-endocrine therapy index predict clinical outcomes in ER positive metastatic breast cancer patients: results of the COMETI Phase 2 trial. In: abstr#P01-01-01 San Antonio breast cancer symposiumGoogle Scholar
  34. Payne RE, Yague E, Slade MJ et al (2009) Measurements of EGFR expression on circulating tumor cells are reproducible over time in metastatic breast cancer patients. Pharmacogenomics 10:51–57CrossRefGoogle Scholar
  35. Pestrin M, Bessi S, Puglisi F et al (2012) Final results of a multicenter phase II clinical trial evaluating the activity of single-agent lapatinib in patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells. A proof-of-concept study. Breast Cancer Res Treat 134:283–289CrossRefGoogle Scholar
  36. Poruk KE, Blackford AL, Weiss MJ et al (2016) Circulating tumor cells expressing markers of tumor initiating cells predict poor survival and cancer recurrence in patients with pancreatic ductal adenocarcinoma. Clin Cancer Res 2016Google Scholar
  37. Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017CrossRefGoogle Scholar
  38. Rack B, Schindlbeck C, Juckstock J et al (2014) Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 106Google Scholar
  39. Riethdorf S, Muller V, Zhang L et al (2010) Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res 16:2634–2645CrossRefGoogle Scholar
  40. Robinson DR, Wu YM, Vats P et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45:1446–1451CrossRefGoogle Scholar
  41. Rugo H (2015) Preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1–positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. San AntonioGoogle Scholar
  42. Scher HI, Heller G, Molina A et al (2011) Evaluation of circulating tumor cell (CTC) enumeration as an efficacy response biomarker of overall survival (OS) in metastatic castration-resistant prostate cancer (mCRPC): planned final analysis (FA) of COU-AA-301, a randomized, double-blind, placebo-controlled, phase III study of abiraterone acetate (AA) plus low-dose prednisone (P) post docetaxel. J Clin Oncol 29:LBA4517CrossRefGoogle Scholar
  43. Schiavon G, Hrebien S, Garcia-Murillas I et al (2015) Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 7:313ra182Google Scholar
  44. Smerage JB, Budd GT, Doyle GV et al (2013) Monitoring apoptosis and Bcl-2 on circulating tumor cells in patients with metastatic breast cancer. Mol Oncol 7:680–692CrossRefGoogle Scholar
  45. Smerage JB, Barlow WE, Hortobagyi GN et al (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol 32:3483–3489CrossRefGoogle Scholar
  46. Teutsch SM, Bradley LA, Palomaki GE et al (2009) The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP working group. Genet Med 11:3–14CrossRefGoogle Scholar
  47. Van Poznak C, Somerfield MR, Bast RC et al (2015) Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American society of clinical oncology clinical practice guideline. J Clin Oncol 33:2695–2704CrossRefGoogle Scholar
  48. Wang LH, Pfister TD, Parchment RE et al (2010) Monitoring drug-induced gammaH2AX as a pharmacodynamic biomarker in individual circulating tumor cells. Clin Cancer Res 16:1073–1084CrossRefGoogle Scholar
  49. Weber JS, Kudchadkar RR, Yu B et al (2013) Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol 31:4311–4318CrossRefGoogle Scholar
  50. Xenidis N, Ignatiadis M, Apostolaki S et al (2009) Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol 27:2177–2184CrossRefGoogle Scholar
  51. Zhang L, Riethdorf S, Wu G et al (2012) Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res 18:5701–5710CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Erin F. Cobain
    • 1
  • Costanza Paoletti
    • 1
  • Jeffrey B. Smerage
    • 1
  • Daniel F. Hayes
    • 1
    Email author
  1. 1.Department of Internal MedicineBreast Oncology Program of the Comprehensive Cancer Center, University of Michigan Health SystemAnn ArborUSA

Personalised recommendations