Circulating Tumor Cells: High-Throughput Imaging of CTCs and Bioinformatic Analysis

  • Kevin Keomanee-Dizon
  • Stephanie N. Shishido
  • Peter KuhnEmail author
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 215)


Circulating tumor cells (CTCs) represent novel biomarkers, since they are obtainable through a simple and noninvasive blood draw or liquid biopsy. Here, we review the high-definition single-cell analysis (HD-SCA) workflow, which brings together modern methods of immunofluorescence with more sophisticated image processing to rapidly and accurately detect rare tumor cells among the milieu of platelets, erythrocytes, and leukocytes in the peripheral blood. In particular, we discuss progress in methods to measure CTC morphology and subcellular protein expression, and we highlight some initial applications that lead to fundamental new insights about the hematogenous phase of cancer, as well as its performance in early-stage diagnosis and treatment monitoring. We end with an outlook on how to further probe CTCs and the unique advantages of the HD-SCA workflow for improving the precision of cancer care.


Circulating tumor cells High throughput Image processing Physical oncology Morphometry Biomarkers Liquid biopsy Intratumor heterogeneity Diagnostics Precision medicine 


  1. Aceto N, Bardia A, Miyamoto DT et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122PubMedPubMedCentralGoogle Scholar
  2. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ashworth TR (1869) A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 14:146–147Google Scholar
  4. Budd GT, Cristofanilli M, Ellis MJ et al (2006) Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin Cancer Res 12(21):6403–6409CrossRefGoogle Scholar
  5. Carlsson A, Nair VS, Luttgen MS et al (2014) Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer. J Thorac Oncol 9(8):1111–1119PubMedPubMedCentralCrossRefGoogle Scholar
  6. Carlsson A, Kuhn P, Luttgen MS, Dizon KK, Troncoso P, Corn PG, Kolatkar A, Hicks JB, Logothetis C, Zurita AJ (2017) Paired high-content analysis of prostate cancer cells in bone marrow and Blood characterizes increased androgen receptor expression in tumor cell clusters. Clin Cancer Res 23:1722–1732PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564PubMedCrossRefGoogle Scholar
  8. Chalfin HJ, Glavaris SA, Malihi PD, Sperger JM, Gorin MA, Lu C, Goodwin CR, Chen Y, Caruso EA, Dumpit R, Kuhn P, Lang JM, Nelson PS, Luo J, Pienta KJ (2018) Prostate cancer disseminated tumor cells are rarely detected in the bone marrow of localized patientsundergoing radical prostatectomy across multiple rare cell detection platforms. J Urol 199(6):1494–1501.Google Scholar
  9. Cho EH, Wendel M, Luttgen M et al (2012) Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 9(1):016001PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cohen SJ, Cj Punt, Iannotti N et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26(19):3213–3221CrossRefGoogle Scholar
  11. Dago AE, Stepanskky A, Carlsson A et al (2014) Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS ONE 9(8):e101777PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dawson SJ, Dw Tsui, Murtaza M et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209CrossRefGoogle Scholar
  13. de Bono JS, Scher HI, Montgomery RB et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14(19):6302–6309PubMedPubMedCentralCrossRefGoogle Scholar
  14. Forshew T, Murtaza M, Parkinson C et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4(136):136ra68PubMedCrossRefGoogle Scholar
  15. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457PubMedCrossRefGoogle Scholar
  16. Friedl P, Locker J, Sahai E et al (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14(8):777–783PubMedCrossRefGoogle Scholar
  17. Gerdtsson E, Pore M, Thiele J-A, Sandstrom Gerdtsson A, Malihi PD, Nevarez R, Kolatkar A, Ruiz Velasco C, Wix S, Singh M, Carlsson A, Zurita AJ, Logothetis C, Merchant AA, Hicks J, Kuhn P (2018) Multiplex protein detection on circulating tumor cells from liquid biopsies using imaging mass cytometry. Converg Sci Phys Oncol 4:015002PubMedPubMedCentralCrossRefGoogle Scholar
  18. Giesen C, Wang HA, Schapiro D et al (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11(4):417–422PubMedCrossRefGoogle Scholar
  19. Gross ME, Dorff TB, Quinn DI, Agus DB, Luttgen M, Bethel K, Kolatkar A, Kuhn P (2015) Rapid changes in circulating tumor cells following anti-angiogenic therapy. Converg Sci Phys Oncol 1(1):015002CrossRefGoogle Scholar
  20. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  21. Hendrix MJ, Seftor EA, Hess AR et al (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3(6):411–421PubMedCrossRefGoogle Scholar
  22. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261PubMedCrossRefGoogle Scholar
  23. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(1420):1420–1428PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kats-Ugurlu G, Roodink I, de Weijert M et al (2009) Circulating tumour tissue fragments in patients with pulmonary metastasis of clear cell renal cell carcinoma. J Pathol 219(3):287–293PubMedCrossRefGoogle Scholar
  25. King MR, Phillips KG, Mitrugno A et al (2015) A physical sciences network characterization of circulating tumor cell aggregate transport. Am J Physiol Cell Physiol 308(10):C792–C802PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kuhn P, Bethel K (2012) A fluid biopsy as investigating technology for the fluid phase of solid tumors. Phys Biol 9(1):010301PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lazar DC, Cho EH, Luttgen MS et al (2012) Cytometric comparisons between circulating tumor cells from prostate cancer patients and the prostate-tumor-derived LNCaP cell line. Phys Biol 9(1):016002PubMedPubMedCentralCrossRefGoogle Scholar
  28. Malihi P, Morikado M, Welter L, Liu ST, Miller ET, Cadaneanu RM, Knudsen BS, Lewis MS, Carlsson A, Ruiz Velasco C, Kolatkar A, Rodriguez-Lee M, Garraway IP, Hicks J, Kuhn P (2018) Clonal diversity revealed by morphoproteomic and copy number profiles of singleprostate cancer cells at diagnosis. Converg Sci Phys Oncol 4:015003Google Scholar
  29. Marrinucci D, Bethel K, Bruce RH et al (2007) Case study of the morphologic variation of circulating tumor cells. Human Pathol 38(3):514–519CrossRefGoogle Scholar
  30. Marrinucci D, Bethel K, Luttgen M et al (2009) Circulating tumor cells from well-differentiated lung adenocarcinoma retain cytomorphologic features of primary tumor type. Arch Pathol Lab Med 133(9):1468–1471PubMedPubMedCentralGoogle Scholar
  31. Marrinucci D, Bethel K, Lazar D et al (2010) Cytomorphology of circulating colorectal tumor cells: a small case series. J Oncol 2010:861341PubMedPubMedCentralCrossRefGoogle Scholar
  32. Marrinucci D, Bethel K, Kolatkar A et al (2012) Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol 9(1):016003PubMedPubMedCentralCrossRefGoogle Scholar
  33. Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112CrossRefGoogle Scholar
  34. Nair VS, Keu KV, Luttgen MS et al (2013) An observational study of circulating tumor cells and (18)F-FDG PET uptake in patients with treatment-naive non-small cell lung cancer. PLoS ONE 8(7):e67733PubMedPubMedCentralCrossRefGoogle Scholar
  35. Newton PK, Mason J, Bethel K et al (2013) Spreaders and sponges define metastasis in lung cancer: a markov chain monte carlo mathematical model. Can Res 73(9):2760–2769CrossRefGoogle Scholar
  36. Newton PK, Mason J, Hurt B et al (2014) Entropy, complexity, and Markov diagrams for random walk cancer models. Sci Rep 4:7558PubMedPubMedCentralCrossRefGoogle Scholar
  37. Nieva J, Wendel M, Luttgen MS et al (2012) High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis. Phys Biol 9(1):016004PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ozkumur E, Shah AM, Ciciliano JC et al (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5(179):179ra47PubMedPubMedCentralCrossRefGoogle Scholar
  39. Partin AW, Steinberg GD, Pitcock RV et al (1992) Use of nuclear morphometry, gleason histologic scoring, clinical stage, and age to predict disease-free survival among patients with prostate-cancer. Cancer 70(1):161–168PubMedCrossRefGoogle Scholar
  40. Pecot CV, Bischoff FZ, Mayer JA et al (2011) A novel platform for detection of CK+ and CK− CTCs. Cancer Discov 1(7):580–586PubMedPubMedCentralCrossRefGoogle Scholar
  41. Phillips KG, Velasco CR, Li J et al (2012a) Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front Oncol 2:72PubMedPubMedCentralGoogle Scholar
  42. Phillips KG, Kolatkar A, Rees KJ et al (2012b) Quantification of cellular volume and sub-cellular density fluctuations: comparison of normal peripheral blood cells and circulating tumor cells identified in a breast cancer patient. Front Oncol 2:96PubMedPubMedCentralGoogle Scholar
  43. Phillips K, Kuhn P, McCarty OJ (2014) Physical biology in cancer. 2. The physical biology of circulating tumor cells. Am J Physiol Cell Physiol 306(2):C80–88PubMedCrossRefPubMedCentralGoogle Scholar
  44. Pienta KJ, Coffey DS (1991) Correlation of nuclear morphometry with progression of breast cancer. Cancer 68(9):2012–2016PubMedCrossRefGoogle Scholar
  45. Rodriguez-Lee M, Kolatkar A, McCormick M, Dago AE, Kendall J, Carlsson NA, Bethel K, Greenspan E, Hwang S, Waitman K, Nieva J, Hicks J, Kuhn P (2018) Effect of blood collection tube type and time to processing on the enumeration and high-content characterization of circulating tumor cells using the high-definition single cell assay. Arch Pathol Lab Med 142:198–207CrossRefGoogle Scholar
  46. Ruiz C, Li J, Lutthgen MS et al (2015) Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients. Phys Biol 12(1):016008PubMedPubMedCentralCrossRefGoogle Scholar
  47. Samson S, Baas C (2015) The great debate: are CTCs ready for prime time? Convergent Science Physical Oncology 1:017001CrossRefGoogle Scholar
  48. Santos A, Ortiz de Solorzano C, Vaquero JJ et al (1997) Evaluation of autofocus functions in molecular cytogenetic analysis. J Microsc 188(Pt 3):264–272PubMedCrossRefGoogle Scholar
  49. Scott J, Kuhn P, Anderson AR (2012) Unifying metastasis–integrating intravasation, circulation and end-organ colonization. Nat Rev Cancer 12(7):445–446PubMedPubMedCentralCrossRefGoogle Scholar
  50. Shishido SN, Welter L, Rodriguez-Lee M, Kolatkar A, Liya X, Gerdtsson AS, Restrepo-Vassalli S, Anders C, Joe L, Greenspan EJ, Hwang SE, Waitman KR, Nieva J, Bethel K, Hicks J, Peter K. Pre-analytical variables for the genomic assessment of the cellular and acellular fractions of the liquid biopsy in a cohort ofbreast cancer patients. J Mol Diagn (accepted)Google Scholar
  51. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21PubMedCrossRefGoogle Scholar
  52. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454CrossRefGoogle Scholar
  53. Tosi P, Luzi P, Baak JP et al (1986) Nuclear morphometry as an important prognostic factor in stage I renal cell carcinoma. Cancer 58(11):2512–2518PubMedCrossRefGoogle Scholar
  54. Vollath D (1987) Automatic focusing by correlative methods. J Microsc-Oxf 147:279–288CrossRefGoogle Scholar
  55. Wendel M, Bazhenova L, Boshuizen R et al (2012) Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys Biol 9(1):016005PubMedPubMedCentralCrossRefGoogle Scholar
  56. Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, Leong H-S, Chester C, Simms N, Polanski R, Nonaka D, Priest L, Fusi A, Carlsson F, Carlsson A, Hendrix M, Seftor R, Seftor E, Rothwell D, Hughes A, Hicks J, Miller C, Kuhn P, Brady G, Simpson K, Blackhall F, Dive C (2016) Vasculogenic mimicry in small cell lung cancer. Nat Commun 7:13322Google Scholar
  57. Yap TA, Lorente D, Omlin A et al (2014) Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res 20(10):2553–2568PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kevin Keomanee-Dizon
    • 1
    • 2
  • Stephanie N. Shishido
    • 1
  • Peter Kuhn
    • 1
    • 2
    Email author
  1. 1.Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and SciencesUniversity of Southern CaliforniaLos AngelesUnited States
  2. 2.Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUnited States

Personalised recommendations