Genetic Analysis of Circulating Tumour Cells

  • Michael Paul Kolinsky
  • Nikolas Stoecklein
  • Maryou Lambros
  • Veronica Gil
  • Daniel Nava Rodrigues
  • Suzanne Carreira
  • Zafeiris Zafeiriou
  • Johann Sebastian de BonoEmail author
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 215)


The classification of human cancers has traditionally relied on the tissue of origin, the histologic appearance and anatomical extent of disease, otherwise referred to as grade and stage. However, this system fails to explain the highly variable clinical behaviour seen for any one cancer. Molecular characterization through techniques such as next-generation sequencing (NGS) has led to an appreciation of the extreme genetic heterogeneity that underlies most human cancers. Because of the difficulties associated with fresh tissue biopsy, interest has increased in using circulating tumour material, such as circulating tumour cells (CTCs), as a non-invasive way to access tumour tissue. CTC enumeration has been demonstrated to have prognostic value in metastatic breast, colon and prostate cancers. Recent studies have also shown that CTCs are suitable material for molecular characterization, using techniques such as reverse transcription-polymerase chain reaction (RT-PCR), fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and NGS. Furthermore, genetic analysis of CTCs may be more suitable to study tumour heterogeneity and clonal evolution than fresh tissue biopsy. Whether blood-based biopsy techniques will be accepted as a replacement to fresh tissue biopsies remains to be seen, but there is reason for optimism. While significant barriers to this acceptance exist, blood-based biopsy techniques appear to be reliable and representative alternatives to fresh tissue biopsy.


Circulating tumour cells (CTCs) Molecular characterization Precision medicine Reverse transcription-polymerase chain reaction (RT-PCR) Fluorescence in situ hybridization (FISH) Array comparative genomic hybridization (aCGH) Next-generation sequencing (NGS) Cell-free DNA Exosomes Liquid biopsy 


  1. Aceto N, Bardia A, Miyamoto DT et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122PubMedPubMedCentralGoogle Scholar
  2. Alix-Panabieres C (2012) EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les Recherches sur le Cancer 195:69–76PubMedPubMedCentralGoogle Scholar
  3. Alix-Panabieres C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59(1):110–118PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14(9):623–631PubMedCrossRefPubMedCentralGoogle Scholar
  5. Antonarakis ES, Lu C, Wang H et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371(11):1028–1038PubMedPubMedCentralCrossRefGoogle Scholar
  6. Armstrong AJ, Marengo MS, Oltean S et al (2011) Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 9(8):997–1007PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ashworth TR (1869) A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 14:146–149Google Scholar
  8. Attard G, Swennenhuis JF, Olmos D et al (2009) Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 69(7):2912–2918PubMedCrossRefPubMedCentralGoogle Scholar
  9. Azad AA, Volik SV, Wyatt AW et al (2015) Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 21(10):2315–2324PubMedCrossRefPubMedCentralGoogle Scholar
  10. Barrière G, Tartary M, Rigaud M (2012) Epithelial mesenchymal transition: a new insight into the detection of circulating tumor cells. ISRN Oncol 2012:382010PubMedPubMedCentralGoogle Scholar
  11. Bergethon K, Shaw AT, Ou SH et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30(8):863–870PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra24Google Scholar
  13. Biankin AV, Hudson TJ (2011) Somatic variation and cancer: therapies lost in the mix. Hum Genet 130(1):79–91PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cohen SJ, Punt CJ, Iannotti N et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26(19):3213–3221PubMedCrossRefGoogle Scholar
  16. Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791PubMedPubMedCentralCrossRefGoogle Scholar
  17. Czyż ZT, Hoffmann M, Schlimok G et al (2014) Reliable single cell array CGH for clinical samples. PLoS ONE 9(1):e85907PubMedPubMedCentralCrossRefGoogle Scholar
  18. Danila DC, Anand A, Sung CC et al (2011) TMPRSS2-ERG status in circulating tumor cells as a predictive biomarker of sensitivity in castration-resistant prostate cancer patients treated with abiraterone acetate. Eur Urol 60(5):897–904PubMedPubMedCentralCrossRefGoogle Scholar
  19. De Bono JS, Scher HI, Montgomery RB et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14(19):6302–6309Google Scholar
  20. Denlinger CE, Ikonomidis JS, Reed CE et al (2010) Epithelial to mesenchymal transition: the doorway to metastasis in human lung cancers. J Thorac Cardiovasc Surg 140(3):505–513PubMedCrossRefPubMedCentralGoogle Scholar
  21. Douillard JY, Oliner KS, Siena S et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034PubMedPubMedCentralCrossRefGoogle Scholar
  22. Eifler RL, Lind J, Falkenhagen D et al (2011) Enrichment of circulating tumor cells from a large blood volume using leukapheresis and elutriation: proof of concept. Cytometry B Clin Cytom 80(2):100–111PubMedCrossRefPubMedCentralGoogle Scholar
  23. El-Heliebi A, Kroneis T, Zöhrer E et al (2013) Are morphological criteria sufficient for the identification of circulating tumor cells in renal cancer? J Transl Med 11:214PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fidler IJ (2003) The pathogenesis of cancer metastasis: the’seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458CrossRefGoogle Scholar
  25. Fiegler H, Geigl JB, Langer S et al (2007) High resolution array-CGH analysis of single cells. Nucleic Acids Res 35(3):e15PubMedCrossRefPubMedCentralGoogle Scholar
  26. Fischer JC, Niederacher D, Topp SA et al (2013) Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc Natl Acad Sci U S A 110(41):16580–16585PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fraser M, Berlin A, Bristow RG et al (2015) Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer. Urol Oncol 33(2):85–94PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fuhrmann C, Schmidt-Kittler O, Stoecklein NH et al (2008) High-resolution array comparative genomic hybridization of single micrometastatic tumor cells. Nucleic Acids Res 36(7):e39PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gascoyne PR, Noshari J, Anderson TJ et al (2009) Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30(8):1388–1398PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gorges TM, Penkalla N, Schalk T et al (2016) Enumeration and molecular characterization of tumor cells in lung cancer patients using a novel in vivo device for capturing circulating tumor cells. Clin Cancer Res 22(9):2197–2206PubMedCrossRefPubMedCentralGoogle Scholar
  32. Greaves M (2012) Clonal evolution in cancer. Nature 481(7381):306–313PubMedPubMedCentralGoogle Scholar
  33. Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350–1356PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hardingham JE, Grover P, Winter M et al (2015) Detection and clinical significance of circulating tumor cells in colorectal cancer—20 years of progress. Mol Med 21(Suppl 1):S25–S31PubMedPubMedCentralCrossRefGoogle Scholar
  35. Heidary M, Auer M, Ulz P et al (2014) The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res 16(4):1–10CrossRefGoogle Scholar
  36. Heitzer E, Auer M, Gasch C et al (2013) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73(10):2965–2975PubMedCrossRefGoogle Scholar
  37. Hodgkinson CL, Li Y, Metcalf RL et al (2014) Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 20(8):897–903PubMedCrossRefGoogle Scholar
  38. Huang L, Ma F, Chapman A et al (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet 16:79–102PubMedCrossRefGoogle Scholar
  39. Jamal-Hanjani M, Wilson GA, Horswell S et al (2015) Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer. Ann Oncol 27(5):862–867CrossRefGoogle Scholar
  40. Krebs MG, Metcalf RL, Carter L et al (2014) Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol 11(3):129–144PubMedCrossRefPubMedCentralGoogle Scholar
  41. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520PubMedPubMedCentralCrossRefGoogle Scholar
  42. Leversha MA, Han J, Asgari Z et al (2009) Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin Cancer Res 15(6):2091–2097PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lohr JG, Adalsteinsson VA, Cibulskis K et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32(5):479–484PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lopez-Riquelme N, Minguela A, Villar-Permuy F et al (2013) Imaging cytometry for counting circulating tumor cells: comparative analysis of the cell search versus imagestream systems. APMIS 121(12):1139–1143PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lowes LE, Lock M, Rodrigues G et al (2015) The significance of circulating tumor cells in prostate cancer patients undergoing adjuvant or salvage radiation therapy. Prostate Cancer Prostatic Dis 18(4):358–364PubMedPubMedCentralCrossRefGoogle Scholar
  46. Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10(1):e1004126PubMedPubMedCentralCrossRefGoogle Scholar
  47. Macconaill LE, Garraway LA (2010) Clinical implications of the cancer genome. J Clin Oncol 28(35):5219–5228PubMedPubMedCentralCrossRefGoogle Scholar
  48. Maheswaran S, Sequist LV, Nagrath S et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359(4):366–377PubMedPubMedCentralCrossRefGoogle Scholar
  49. Marrinucci D, Bethel K, Bruce RH et al (2007) Case study of the morphologic variation of circulating tumor cells. Hum Pathol 38(3):514–519PubMedCrossRefPubMedCentralGoogle Scholar
  50. Mateo J, Carreira S, Sandhu S et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373(18):1697–1708PubMedPubMedCentralCrossRefGoogle Scholar
  51. Meng S, Tripathy D, Shete S et al (2004) HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A 101(25):9393–9398PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mohan S, Heitzer E, Ulz P et al (2014) Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet 10(3):e1004271PubMedPubMedCentralCrossRefGoogle Scholar
  53. Möhlendick B, Bartenhagen C, Behrens B et al (2013) A robust method to analyze copy number alterations of less than 100 kb in single cells using oligonucleotide array CGH. PLoS ONE 8(6):e67031PubMedPubMedCentralCrossRefGoogle Scholar
  54. Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112CrossRefGoogle Scholar
  55. Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239PubMedPubMedCentralCrossRefGoogle Scholar
  56. Neves RP, Raba K, Schmidt O et al (2014) Genomic high-resolution profiling of single CKpos/CD45neg flow-sorting purified circulating tumor cells from patients with metastatic breast cancer. Clin Chem 60(10):1290–1297PubMedPubMedCentralGoogle Scholar
  57. Ni X, Zhuo M, Su Z et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci U S A 110(52):21083–21088CrossRefGoogle Scholar
  58. Pantel K, Alix-Panabières C (2012) Detection methods of circulating tumor cells. J Thorac Dis 4(5):446–447PubMedPubMedCentralGoogle Scholar
  59. Pizon M, Zimon D, Carl S et al (2013) Heterogeneity of circulating epithelial tumour cells from individual patients with respect to expression profiles and clonal growth (sphere formation) in breast cancer. Ecancermedicalscience 7:343PubMedPubMedCentralGoogle Scholar
  60. Polzer B, Medoro G, Pasch S et al (2014) Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 6(11):1371–1386PubMedPubMedCentralCrossRefGoogle Scholar
  61. Punnoose EA, Ferraldeschi R, Szafer-Glusman E et al (2015) PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br J Cancer 113(8):1225–1233PubMedPubMedCentralCrossRefGoogle Scholar
  62. Rack B, Schindlbeck C, Jückstock J et al (2014) Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 106(5)Google Scholar
  63. Riethdorf S, Fritsche H, Müller V et al (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res 13(3):920–928PubMedPubMedCentralCrossRefGoogle Scholar
  64. Sabina J, Leamon JH (2015) Bias in whole genome amplification: causes and considerations. Methods Mol Biol 1347:15-41Google Scholar
  65. San Lucas FA, Allenson K, Bernard V et al (2016) Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann Oncol 27(4):635–641PubMedCrossRefPubMedCentralGoogle Scholar
  66. Sastre J, Maestro ML, Puente J et al (2008) Circulating tumor cells in colorectal cancer: correlation with clinical and pathological variables. Ann Oncol 19(5):935–938PubMedCrossRefPubMedCentralGoogle Scholar
  67. Saucedo-Zeni N, Mewes S, Niestroj R et al (2012) A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol 41(4):1241–1250PubMedPubMedCentralGoogle Scholar
  68. Scher HI, Jia X, de Bono JS et al (2009) Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol 10(3):233–239PubMedPubMedCentralCrossRefGoogle Scholar
  69. Scher HI, Heller G, Molina A et al (2015) Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol 33(12):1348–1355PubMedPubMedCentralCrossRefGoogle Scholar
  70. Sequist LV, Nagrath S, Toner M et al (2009) The CTC-chip: an exciting new tool to detect circulating tumor cells in lung cancer patients. J Thorac Oncol 4(3):281–283PubMedPubMedCentralCrossRefGoogle Scholar
  71. Shaw JA, Page K, Blighe K et al (2012) Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 22(2):220–231PubMedPubMedCentralCrossRefGoogle Scholar
  72. Skog J, Würdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedPubMedCentralCrossRefGoogle Scholar
  73. Smerage JB, Barlow WE, Hortobagyi GN et al (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol 32(31):3483–3489PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sørlie T, Perou CM, Tibshirani R, et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001 98(19):10869–74CrossRefGoogle Scholar
  75. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800PubMedCrossRefPubMedCentralGoogle Scholar
  76. Speicher MR, Pantel K (2014) Tumor signatures in the blood. Nat Biotechnol 32(5):441–443PubMedCrossRefPubMedCentralGoogle Scholar
  77. Stathopoulou A, Vlachonikolis I, Mavroudis D et al (2002) Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol 20(16):3404–3412PubMedCrossRefPubMedCentralGoogle Scholar
  78. Steinert G, Schölch S, Niemietz T et al (2014) Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res 74(6):1694–1704PubMedCrossRefPubMedCentralGoogle Scholar
  79. Stoecklein NH, Fischer JC, Niederacher D et al (2016) Challenges for CTC-based liquid biopsies: low CTC frequency and diagnostic leukapheresis as a potential solution. Expert Rev Mol Diagn 16(2):147–164PubMedCrossRefGoogle Scholar
  80. Sundaresan TK, Sequist LV, Heymach JV et al (2016) Detection of T790 M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res 22(5):1103–1110PubMedCrossRefGoogle Scholar
  81. Swennenhuis JF, Tibbe AG, Levink R et al (2009) Characterization of circulating tumor cells by fluorescence in situ hybridization. Cytometry A 75(6):520–527PubMedCrossRefGoogle Scholar
  82. Swennenhuis JF, Reumers J, Thys K et al (2013) Efficiency of whole genome amplification of single circulating tumor cells enriched by cell search and sorted by FACS. Genome Med 5(11):106PubMedPubMedCentralCrossRefGoogle Scholar
  83. Swennenhuis JF, Tibbe AG, Stevens M et al (2015) Self-seeding microwell chip for the isolation and characterization of single cells. Lab Chip 15(14):3039–3046PubMedCrossRefPubMedCentralGoogle Scholar
  84. Thakur BK, Zhang H, Becker A et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766–769PubMedPubMedCentralCrossRefGoogle Scholar
  85. Thierry AR, Mouliere F, El Messaoudi S et al (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20(4):430–435PubMedCrossRefPubMedCentralGoogle Scholar
  86. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536PubMedCrossRefPubMedCentralGoogle Scholar
  87. Vona G, Sabile A, Louha M et al (2000) Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156(1):57–63PubMedPubMedCentralCrossRefGoogle Scholar
  88. Zieglschmid V, Hollmann C, Gutierrez B et al (2005) Combination of immunomagnetic enrichment with multiplex RT-PCR analysis for the detection of disseminated tumor cells. Anticancer Res 25(3A):1803–1810PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Michael Paul Kolinsky
    • 1
    • 2
  • Nikolas Stoecklein
    • 3
  • Maryou Lambros
    • 1
  • Veronica Gil
    • 1
  • Daniel Nava Rodrigues
    • 1
  • Suzanne Carreira
    • 1
  • Zafeiris Zafeiriou
    • 1
  • Johann Sebastian de Bono
    • 1
    Email author
  1. 1.The Institute of Cancer ResearchThe Royal Marsden NHS Foundation TrustSuttonUK
  2. 2.Cross Cancer InstituteEdmontonCanada
  3. 3.University of DüsseldorfDüsseldorfGermany

Personalised recommendations