Circulating miRNAs as Biomarker in Cancer

  • Gitte Brinch Andersen
  • Jörg TostEmail author
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 215)


Deregulation of microRNA expression has been shown to play an important role in human malignancies. The identification of circulating-free miRNAs in biofluids a decade ago led to great enthusiasm and motivation to develop non-invasive tests based on the expression of these small non-coding RNAs. Herein, we review the progress within the field of research for identifying circulating miRNA cancer biomarkers and discuss the advantages and challenges associated with this. We also discuss the methodological and analytical variables, which may influence the final miRNA quantification and the importance of standardizing pre-analytical, analytical, and post-analytical processes in order to enable a successful translation of the results from basic research into the clinics.


miRNA Cancer Biomarker Biofluids Precision medicine Diagnosis Prognosis 



Ethylenediaminetetraacetic acid


High-density lipoproteins


Low-dose computed tomography


Malignant germ cell tumors




miRNA signature classifier




Quantitative polymerase chain reaction


Small nucleolar RNA


Untranslated region


  1. Afonso-Grunz F, Muller S (2015) Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72(16):3127–3141PubMedCrossRefGoogle Scholar
  2. Arroyo JD et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ayers L et al (2011) Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res 127(4):370–377PubMedCrossRefGoogle Scholar
  4. Benjamin H et al (2016) Analytical validity of a microRNA-based assay for diagnosing indeterminate thyroid FNA smears from routinely prepared cytology slides. Cancer Cytopathol 124(10):711–721PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berindan-Neagoe I et al (2014) MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 64(5):311–336PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beutler E, Gelbart T, Kuhl W (1990) Interference of heparin with the polymerase chain reaction. Biotechniques 9(2):166PubMedGoogle Scholar
  7. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95Google Scholar
  8. Blondal T et al (2013) Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59(1):S1–S6PubMedCrossRefGoogle Scholar
  9. Boeri M et al (2011) MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A 108(9):3713–3718PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brennecke J et al (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brunet-Vega A et al (2015) Variability in microRNA recovery from plasma: comparison of five commercial kits. Anal Biochem 488:28–35PubMedCrossRefGoogle Scholar
  12. Bustin SA (2010) Why the need for qPCR publication guidelines? The case for MIQE. Methods 50(4):217–226PubMedCrossRefGoogle Scholar
  13. Bustin SA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622CrossRefPubMedGoogle Scholar
  14. Bustin S et al (2015) Variability of the reverse transcription step: practical implications. Clin Chem 61(1):202–212PubMedCrossRefGoogle Scholar
  15. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866CrossRefGoogle Scholar
  16. Chang TC et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006CrossRefGoogle Scholar
  18. Cortez MA et al (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477PubMedPubMedCentralCrossRefGoogle Scholar
  19. Egidi MG et al (2013) Circulating microRNAs and kallikreins before and after radical prostatectomy: are they really prostate cancer markers? Biomed Res Int 2013:241780PubMedPubMedCentralCrossRefGoogle Scholar
  20. El-Hefnawy T et al (2004) Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem 50(3):564–573PubMedCrossRefGoogle Scholar
  21. El-Khoury V et al (2016) Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Sci Rep 6:19529PubMedPubMedCentralCrossRefGoogle Scholar
  22. Garo LP, Murugaiyan G (2016) Contribution of MicroRNAs to autoimmune diseases. Cell Mol Life Sci 73(10):2041–2051PubMedCrossRefGoogle Scholar
  23. Garzon R et al (2006) MicroRNA expression and function in cancer. Trends Mol Med 12(12):580–587PubMedCrossRefGoogle Scholar
  24. Gemmell CH, Sefton MV, Yeo EL (1993) Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann’s thrombasthenia defect. J Biol Chem 268(20):14586–14589Google Scholar
  25. Gilad S et al (2012) Classification of the four main types of lung cancer using a microRNA-based diagnostic assay. J Mol Diagn 14(5):510–517PubMedCrossRefGoogle Scholar
  26. Haider BA et al (2014) A critical evaluation of microRNA biomarkers in non-neoplastic disease. PLoS ONE 9(2):e89565PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hawkins RC (2010) Phlebotomy site haemolysis rates vary inversely with workload. Clin Chem Lab Med 48(7):1049–1051PubMedCrossRefGoogle Scholar
  28. He L et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833PubMedPubMedCentralCrossRefGoogle Scholar
  29. Heitzer E, Ulz P, Geigl JB (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61(1):112–123PubMedCrossRefGoogle Scholar
  30. Huggett JF et al (2008) Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon. BMC Res Notes 1:70PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hunter MP et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3(11):e3694PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ishikawa H et al (2017) Stability of serum high-density lipoprotein-microRNAs for preanalytical conditions. Ann Clin Biochem 54(1):134–142PubMedCrossRefGoogle Scholar
  33. Jarry J et al (2014) The validity of circulating microRNAs in oncology: five years of challenges and contradictions. Mol Oncol 8(4):819–829PubMedPubMedCentralCrossRefGoogle Scholar
  34. Keller S et al (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kinoshita T et al (2017) MicroRNAs in extracellular vesicles: potential cancer biomarkers. J Hum Genet 62(1):67–74PubMedCrossRefGoogle Scholar
  36. Kirschner MB et al (2013) The impact of hemolysis on cell-free microRNA biomarkers. Front Genet 4:94PubMedPubMedCentralGoogle Scholar
  37. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 2011. 39(Database issue): p. D152–7PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lance MD et al (2013) Do blood collection methods influence whole-blood platelet function analysis? Platelets 24(4):275–281PubMedCrossRefGoogle Scholar
  39. Larrea E et al (2016) New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies. Int J Mol Sci, 2016. 17(5)PubMedCentralCrossRefPubMedGoogle Scholar
  40. Lawrie CH et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675PubMedCrossRefGoogle Scholar
  41. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20CrossRefGoogle Scholar
  43. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lippi G et al (2012) Influence of mechanical trauma of blood and hemolysis on PFA-100 testing. Blood Coagul Fibrinolysis 23(1):82–86PubMedCrossRefGoogle Scholar
  45. Lithwick-Yanai G et al (2017) Multicentre validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules utilising fine needle aspirate smears. J Clin Pathol 70(6):500–507PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838CrossRefGoogle Scholar
  47. Maillot G et al (2009) Widespread estrogen-dependent repression of microRNAs involved in breast tumor cell growth. Cancer Res 69(21):8332–8340PubMedCrossRefGoogle Scholar
  48. Mall C et al (2013) Stability of miRNA in human urine supports its biomarker potential. Biomark Med 7(4):623–631PubMedCrossRefGoogle Scholar
  49. McNutt M (2014) Journals unite for reproducibility. Science 346(6210):679PubMedCrossRefGoogle Scholar
  50. Meiri E et al (2012) A second-generation microRNA-based assay for diagnosing tumor tissue origin. Oncologist 17(6):801–812PubMedPubMedCentralCrossRefGoogle Scholar
  51. Meisgen F et al (2012) MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 21(4):312–314PubMedCrossRefGoogle Scholar
  52. Mestdagh P et al (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11(8):809–815PubMedCrossRefGoogle Scholar
  53. Meyer SU et al (2012) Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs–a comparative study. PLoS ONE 7(6):e38946PubMedPubMedCentralCrossRefGoogle Scholar
  54. Michael A et al (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 16(1):34–38PubMedCrossRefGoogle Scholar
  55. Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518PubMedPubMedCentralCrossRefGoogle Scholar
  56. Negrini M, Nicoloso MS, Calin GA (2009) MicroRNAs and cancer—new paradigms in molecular oncology. Curr Opin Cell Biol 21(3):470–479PubMedCrossRefGoogle Scholar
  57. Palmer RD et al (2010) Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res 70(7):2911–2923PubMedPubMedCentralCrossRefGoogle Scholar
  58. Patnaik SK, Mallick R, Yendamuri S (2010) Detection of microRNAs in dried serum blots. Anal Biochem 407(1):147–149PubMedPubMedCentralCrossRefGoogle Scholar
  59. Pentheroudakis G et al (2013) Novel microRNA-based assay demonstrates 92% agreement with diagnosis based on clinicopathologic and management data in a cohort of patients with carcinoma of unknown primary. Mol Cancer 12:57PubMedPubMedCentralCrossRefGoogle Scholar
  60. Qin LX, Tuschl T, Singer S (2013) An empirical evaluation of normalization methods for microRNA arrays in a liposarcoma study. Cancer Inform 12:83–101PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ralla B et al (2014) Nucleic acid-based biomarkers in body fluids of patients with urologic malignancies. Crit Rev Clin Lab Sci 51(4):200–231PubMedCrossRefGoogle Scholar
  62. Rosenfeld N et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26(4):462–469PubMedCrossRefGoogle Scholar
  63. Schwarzenbach H et al (2015) Data normalization strategies for microRNA quantification. Clin Chem 61(11):1333–1342PubMedPubMedCentralCrossRefGoogle Scholar
  64. Sestini S et al (2015) Circulating microRNA signature as liquid-biopsy to monitor lung cancer in low-dose computed tomography screening. Oncotarget 6(32):32868–32877PubMedPubMedCentralCrossRefGoogle Scholar
  65. Shah JS, Soon PS, Marsh DJ (2016) Comparison of methodologies to detect low levels of hemolysis in serum for accurate assessment of serum microRNAs. PLoS ONE 11(4):e0153200PubMedPubMedCentralCrossRefGoogle Scholar
  66. Shaham L et al (2012) MiR-125 in normal and malignant hematopoiesis. Leukemia 26(9):2011–2018PubMedCrossRefGoogle Scholar
  67. Shkurnikov MY et al (2016) Analysis of plasma microRNA associated with hemolysis. Bull Exp Biol Med 160(6):748–750PubMedCrossRefGoogle Scholar
  68. Smalheiser NR (2007) Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2:35PubMedPubMedCentralCrossRefGoogle Scholar
  69. Sozzi G et al (2014) Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol 32(8):768–773PubMedPubMedCentralCrossRefGoogle Scholar
  70. Spector Y et al (2013) Development and validation of a microRNA-based diagnostic assay for classification of renal cell carcinomas. Mol Oncol 7(3):732–738PubMedPubMedCentralCrossRefGoogle Scholar
  71. Stark A et al (2003) Identification of drosophila MicroRNA targets. PLoS Biol 1(3):E60PubMedPubMedCentralCrossRefGoogle Scholar
  72. Sun YM, Lin KY, Chen YQ (2013) Diverse functions of miR-125 family in different cell contexts. J Hematol Oncol 6:6PubMedPubMedCentralCrossRefGoogle Scholar
  73. Svoronos AA, Engelman DM, Slack FJ (2016) OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res 76(13):3666–3670PubMedPubMedCentralCrossRefGoogle Scholar
  74. Tiberio P et al (2015) Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int 2015:731479PubMedPubMedCentralCrossRefGoogle Scholar
  75. Tuck MK et al (2009) Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J Proteome Res 8(1):113–117PubMedPubMedCentralCrossRefGoogle Scholar
  76. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659CrossRefGoogle Scholar
  77. Vickers KC et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433PubMedPubMedCentralCrossRefGoogle Scholar
  78. Volinia S et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261PubMedPubMedCentralCrossRefGoogle Scholar
  79. Wan JCM et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17(4):223–238PubMedPubMedCentralCrossRefGoogle Scholar
  80. Wang D et al (2010) Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One 5(9)PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wang K et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248–7259PubMedPubMedCentralCrossRefGoogle Scholar
  82. Weber JA et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741PubMedPubMedCentralCrossRefGoogle Scholar
  83. Williams AE (2008) Functional aspects of animal microRNAs. Cell Mol Life Sci 65(4):545–562PubMedCrossRefGoogle Scholar
  84. Witwer KW et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2CrossRefGoogle Scholar
  85. Witwer KW (2015) Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem 61(1):56–63CrossRefGoogle Scholar
  86. Wu K, Li L, Li S (2015) Circulating microRNA-21 as a biomarker for the detection of various carcinomas: an updated meta-analysis based on 36 studies. Tumour Biol 36(3):1973–1981PubMedCrossRefGoogle Scholar
  87. Yokota M et al (1999) Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Anal 13(3):133–140PubMedCrossRefGoogle Scholar
  88. Zhang H, Li Y, Lai M (2010) The microRNA network and tumor metastasis. Oncogene 29(7):937–948PubMedCrossRefGoogle Scholar
  89. Zhao Y et al (2010) Evaluation of normalization methods for two-channel microRNA microarrays. J Transl Med 8:69PubMedPubMedCentralCrossRefGoogle Scholar
  90. Zhu W et al (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2:89PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of BiomedicineAarhus UniversityAarhus CDenmark
  2. 2.Laboratory for Epigenetics and EnvironmentCentre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2EvryFrance

Personalised recommendations