Advertisement

Important Differences in Hematology Results and Hematological Diseases

  • Gregory L. Hall
Chapter

Abstract

This chapter reviews the blood laboratory differences and trends that exist with African American patients including differences in CBC, metabolic panel, lipid panel and cancer markers. Laboratory reference interval differences by race (and gender) have been recognized for many years, but clinical laboratories have been slow to adopt either race or gender-linked reference ranges. The chapter also includes an overview of common hematological diseases in African Americans including sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase (G6PD) deficiency.

References

  1. 1.
    Harris K, Boyd JC. On dividing reference data into subgroups to produce separate reference ranges. Clin Chem. 1990;36/2:265–70.Google Scholar
  2. 2.
    Mayo Clinic, Author. Medical Laboratory Sciences. 2015. [June 15, 2015]. http://www.mayo.edu/mshs/careers/laboratory-sciences.
  3. 3.
    Hickner J, Thompson PJ, Wilkinson T, et al. Primary care physicians’ challenges in ordering clinical laboratory tests and interpreting results. J Am Board Fam Med. 2014;27(2):268–74.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Lim E, Miyamura J, Chen JJ. Racial/ethnic-specific reference intervals for common laboratory tests: a comparison among Asians, Blacks, Hispanics, and White. Hawaii J Med Public Health. 2015;74(9):302–10.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bain BJ. Ethnic and sex differences in the total and differential white cell count and platelet count. J Clin Pathol. 1996;49(8):664–6.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hsieh MM, Everhart JE, Byrd-Holt DD, et al. Prevalence of neutropenia in the U.S. population: age, sex, smoking status, and ethnic differences. Ann Intern Med. 2007;146(7):486–92.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Reed WW, Diehl LF. Leukopenia, neutropenia, and reduced hemoglobin levels in healthy American blacks. Arch Intern Med. 1991;151:501–5.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Freedman DS, Gates L, Flanders WD, et al. Black/white differences in leukocyte subpopulations in men. Int J Epidemiol. 1997;26:757–64.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Lim EM, Cembrowski G, Cembrowski M, Clarke G. Race-specific WBC and neutrophil count reference intervals. Int J Lab Hematol. 2010;32(6p2):590–7.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Palmblad J, Hoglund P. Ethnic benign neutropenia: a phenomenon finds an explanation. Pediatr Blood Cancer. 2018;65(12):e27361.  https://doi.org/10.1002/pbc.27361.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lakhotia R, Aggarwal A, Link ME, et al. Natural history of benign ethnic neutropenia in individuals of African ancestry. Blood Cells Mol Dis. 2019;77:12–6.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Denic S, Narchi H, Mekaini A, et al. Prevalence of neutropenia in children by nationality. BMC Hematol. 2016;16:15.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Thobakgale CF, Ndung’u T. Neutrophil counts in persons of African origin. Curr Opin Hematol. 2014;21:50–7.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hershman D, Weinberg M, Rosner Z, et al. Ethnic neutropenia and treatment delay in African American women undergoing chemotherapy for early-stage breast cancer. J Natl Cancer Inst. 2003;95:1545–8.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Tahmasebi H, Trajcevski K, Higgins V, Adeli K. Influence of ethnicity on population reference values for biochemical markers. Crit Rev Clin Lab Sci. 2018;55(5):359–75.  https://doi.org/10.1080/10408363.2018.1476455. Epub 2018 Jun 6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    CLSI. Defining, establishing, and verifying reference intervals in the clinical laboratory; approved guideline. 3rd ed. CLSI document EP28-A3c. Vol. 28, No. 30. Wayne: Clinical and Laboratory Standards Institute; 2008.Google Scholar
  17. 17.
    Boucai L, Hollowell JG, Surks MI. An approach for development of age-, gender-, and ethnicity-specific thyrotropin reference limits. Thyroid. 2011;21(1):5–11.  https://doi.org/10.1089/thy.2010.0092. Epub 2010 Nov 8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bentley AR, Rotimi CN. Interethnic differences in serum lipids and implications for cardiometabolic disease risk in African ancestry populations. Glob Heart. 2017;12(2):141–50.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Tang P, Du W, Xie K, et al. Characteristics of baseline PSA and PSA velocity in young men without prostate cancer: racial differences. Prostate. 2012;72:173–80.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Saraiya M, Kottiri BJ, Leadbetter S, et al. Total and percent free prostate-specific antigen levels among U.S. men, 2001–2002. Cancer Epidemiol Biomark Prev. 2005;14:2178–82.Google Scholar
  21. 21.
    Giri VH, Egleston B, Ruth K, et al. Race, genetic West African ancestry, and prostate cancer prediction by PSA in prospectively screened high-risk men. Cancer Prev Res (Phila). 2009;2(3):244–50.Google Scholar
  22. 22.
    Kallingal GJ, Walker MR, Musser JE, et al. Impact of race in using PSA velocity to predict for prostate cancer. Mil Med. 2014;179(3):329–32.PubMedPubMedCentralGoogle Scholar
  23. 23.
    D’Amico AV, Chen MH, Roehl KA, et al. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med. 2004;351:125–35.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Libon F, Cavalier E, Nikkels AF. Skin color is relevant to vitamin D synthesis. Dermatology (Basel). 2013;227:250–4.Google Scholar
  25. 25.
    Nessvi S, Johansson L, Jopson J, et al. Association of 25-hydroxyvitamin D3 levels in adult New Zealanders with ethnicity, skin color and self-reported skin sensitivity to sun exposure. Photochem Photobiol. 2011;87:1173–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Gozdzik A, Barta JL, Wu H, et al. Low wintertime vitamin D levels in a sample of healthy young adults of diverse ancestry living in the Toronto area: associations with vitamin D intake and skin pigmentation. BMC Public Health. 2008;8:336.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kant AK, Graubard BI. Race-ethnic, family income, and education differentials in nutritional and lipid biomarkers in US children and adolescents: NHANES 2003–2006. Am J Clin Nutr. 2012;96:601–12.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Carmel R. Ethnic and racial factors in cobalamin metabolism and its disorders. Semin Hematol. 1999;36:88–100.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48.PubMedGoogle Scholar
  30. 30.
    Sickle Cell Disease|CDC. Retrieved from https://www.cdc.gov/ncbddd/sicklecell/facts.html.
  31. 31.
    Noronha SA, Sadremeli SC, Strouse JJ. Management of sickle cell disease in children. South Med J. 2016;109(9):495–502.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Naik RP, Derebail VK, Grams ME, et al. Association of sickle cell trait with chronic kidney disease and albuminuria in African Americans. JAMA. 2014;312:2115–25.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Naik RP, Derebail VK. The spectrum of sickle hemoglobin-related nephropathy: from sickle cell disease to sickle trait. Expert Rev Hematol. 2017;10(12):1087–94.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Fonseca GH, Salemi VC, Gualandro DM, Jardim C, Sousa R, Gualandro SF. Diagnosis of pulmonary hypertension in adults with sickle cell disease. Eur Heart J. 2010;31:759.Google Scholar
  35. 35.
    Liem RI, Nevin MA, Prestridge A, Young LT, Thompson AA. Tricuspid regurgitant jet velocity elevation and its relationship to lung function in pediatric sickle cell disease. Pediatr Pulmonol. 2009;44(3):281–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Arslankoylu AE, Hallioglu O, Yilgor E, Duzovali O. Assessment of cardiac functions in sickle cell anemia with Doppler myocardial performance index. J Trop Pediatr. 2010;56(3):195–7. https://www.cdc.gov/NCBDDD/sicklecell/data.html.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Adeyoju AB, Olujohungbe AB, Morris J, et al. Priapism in sickle-cell disease; incidence, risk factors and complications—an international multicentre study. BJU Int. 2002;90:898–902.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Dupervil B, Grosse S, Burnett A, Parker C. Emergency department visits and inpatient admissions associated with priapism among males with sickle cell disease in the United States, 2006–2010. PLoS One. 2016;11(4):e0153257.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288–94.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Fortin PM, Hopewell S, Estcourt LJ. Red blood cell transfusion to treat or prevent complications in sickle cell disease: an overview of cochrane reviews. Cochrane Database Syst Rev. 2018;(8):CD012082.Google Scholar
  41. 41.
    Estcourt LJ, Fortin PM, Hopewell S, et al. Blood transfusion for preventing primary and secondary stroke in people with sickle cell disease. Cochrane Database Syst Rev. 2013;(11):CD003146.Google Scholar
  42. 42.
    Hankins JS, Penkert RR, Lavoie P, et al. Original research: parvovirus B19 infection in children with sickle cell disease in the hydroxyurea era. Exp Biol Med (Maywood). 2016;241(7):749–54.Google Scholar
  43. 43.
    Dastgiri S, Dolatkhah R. Blood transfusions for treating acute chest syndrome in people with sickle cell disease. Cochrane Database Syst Rev. 2016;(8):CD007843.  https://doi.org/10.1002/14651858.CD007843.pub3.
  44. 44.
    Haywood C, Diener-West M, Strouse J, et al. Perceived discrimination in health care is associated with a greater burden of pain in sickle cell disease. J Pain Symptom Manag. 2014;48(5):934–43.Google Scholar
  45. 45.
    Green CR, Anderson KO, Baker TA, et al. The unequal burden of pain: confronting racial and ethnic disparities in pain. Pain Med. 2003;4:277–94.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Burgess DJ, Grill J, Noorbaloochi S, et al. The effect of perceived racial discrimination on bodily pain among older African American men. Pain Med. 2009;10:1341–52.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Ruta NS, Ballas SK. The opioid drug epidemic and sickle cell disease: guilt by association. Pain Med. 2016;17(10):1793–8.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Chou R, Fanciullo GJ, Fine PG, et al. Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain. J Pain. 2009;10(2):113–30.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Shah P, Khaleel M, Thuptimdang W, et al. Mental stress causes vasoconstriction in sickle cell disease and normal controls. Haematologica. 2019. Pii: haematol 2018.211391.Google Scholar
  50. 50.
    Uwaezuoke SN, Ayuk AC, Ndu IK, et al. Vaso-occlusive crisis in sickle cell disease: current paradigm on pain management. J Pain Res. 2018;11:3141–50.PubMedPubMedCentralGoogle Scholar
  51. 51.
    McGann PT, Ware RE. Hydroxyurea therapy for sickle cell anemia. Expert Opin Drug Saf. 2015;14(11):1749–58.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Muncie HL, Campbell J. Alpha and beta thalassemia. Am Fam Physician. 2009;80(4):339–44.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Vichinsky E, Cohen A, Thompson AA, et al. Epidemiologic and clinical characteristics of nontransfusion-dependent thalassemia in the United States. Pediatr Blood Cancer. 2018;65(7):e27067.  https://doi.org/10.1002/pbc.27067. Epub 2018 Apr 10.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nkhoma ET, Poole C, Vannappagari V, et al. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis. 2009;42:267–78.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Chinevere TD, Murry CK, Grant E, et al. Prevalence of glucose-6-phosphate dehydrogenase deficiency in U.S. Army personnel. Mil Med. 2006;17(9):905–7.Google Scholar
  56. 56.
    Thomas JE, Kang S, Wyatt CJ, et al. Glucose-6-phosphate dehydrogenase deficiency is associated with cardiovascular disease in U.S. military centers. Tex Heart Inst J. 2018;45(3):144–50.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Belfield KD, Tichy EM. Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency. Am J Health Syst Pharm. 2018;75(3):97–104.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gregory L. Hall
    • 1
  1. 1.Partnerships for Urban HealthCleveland State UniversityClevelandUSA

Personalised recommendations