Advertisement

Nonlinear Boundary Value Problems

  • Ravi P. AgarwalEmail author
  • Simona Hodis
  • Donal O’Regan
Chapter
Part of the Problem Books in Mathematics book series (PBM)

Abstract

In this chapter, mainly we shall show the importance of the method of upper and lower solutions [6, 13, 22, 24] to nonlinear boundary value problems which appear in real-world phenomena. The main advantage of this method is that besides proving the existence of the solutions it also provides upper and lower bounds on the solutions. These bounds are of immense value in numerical computations of the solutions [99, 100, 101].

References

  1. 1.
    J.A.D. Ackroyd, ZAMP 29, 729–741 (1978)MathSciNetGoogle Scholar
  2. 2.
    A. Acrivos, M.J. Shah, E.E. Peterson, A.I.Ch.E.J. 6, 312–317 (1960)Google Scholar
  3. 3.
    R.P. Agarwal, Boundary Value Problems for Higher Order Differential Equations (World Scientific, Singapore, 1986)Google Scholar
  4. 4.
    R.P. Agarwal, D. O’Regan, IMA J. Appl. Math. 65, 173–198 (2000)Google Scholar
  5. 5.
    R.P. Agarwal, D. O’Regan, IMA J. Appl. Math. 66, 621–635 (2001)Google Scholar
  6. 6.
    R.P. Agarwal, D. O’Regan, Infinite Interval Problems for Differential, Difference and Integral Equations (Kluwer Academic Publishers, Dordrecht, 2001)zbMATHGoogle Scholar
  7. 7.
    R.P. Agarwal, D. O’Regan, Mathematika 48, 273–292 (2001)MathSciNetGoogle Scholar
  8. 8.
    R.P. Agarwal, D. O’Regan, Dyn. Contin. Discret. Impuls. Syst. Ser. B: Appl. Algorithms 9, 481–488 (2002)Google Scholar
  9. 9.
    R.P. Agarwal, D. O’Regan, Math. Probl. Eng. 8, 135–142 (2002)MathSciNetGoogle Scholar
  10. 10.
    R.P. Agarwal, D. O’Regan, Stud. Appl. Math. 108, 245–257 (2002)MathSciNetGoogle Scholar
  11. 11.
    R.P. Agarwal, D. O’Regan, NoDEA - Nonlinear Differ. Equ. Appl. 9, 419–440 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    R.P. Agarwal, D. O’Regan, Math. Probl. Eng. 8, 143–150 (2002)MathSciNetGoogle Scholar
  13. 13.
    R.P. Agarwal, D. O’Regan, Singular Differential and Integral Equations with Applications (Kluwer Academic Publishers, Dordrecht, 2002)zbMATHGoogle Scholar
  14. 14.
    R.P. Agarwal, D. O’Regan, Mathematika 49, 129–140 (2002)MathSciNetGoogle Scholar
  15. 15.
    R.P. Agarwal, D. O’Regan, Int. J. Nonlinear Mech. 38, 1369–1376 (2003)Google Scholar
  16. 16.
    R.P. Agarwal, D. O’Regan, J. Aust. Math. Soc. Ser. B - Appl. Math. 45, 167–179 (2003)Google Scholar
  17. 17.
    R.P. Agarwal, D. O’Regan, Dyn. Contin. Discret. Impuls. Syst. 10, 965–972 (2003)Google Scholar
  18. 18.
    R.P. Agarwal, D. O’Regan, Methods Appl. Anal. 10, 363–376 (2003)MathSciNetGoogle Scholar
  19. 19.
    R.P. Agarwal, D. O’Regan, Stud. Appl. Math. 111, 339–358 (2003)MathSciNetGoogle Scholar
  20. 20.
    R.P. Agarwal, D. O’Regan, ZAMM 83, 344–350 (2003)Google Scholar
  21. 21.
    R.P. Agarwal, D. O’Regan, Int. J. Nonlinear Mech. 39, 779–784 (2004)Google Scholar
  22. 22.
    R.P. Agarwal, D. O’Regan, Handbook of Differential Equations, Ordinary Differential Equations, vol. 1, ed. by A. Canada, P. Drabek, A. Fonda (Elsevier B.V., Amsterdam, 2004), pp. 1–68Google Scholar
  23. 23.
    R.P. Agarwal, P.J.Y. Wong, in Approximation Theory, in Memory of A.K. Varma, ed. by N.K. Govil et al. (Marcal Dekker, New York, 1998), pp. 1–41Google Scholar
  24. 24.
    R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Positive Solutions of Differential, Difference and Integral Equations (Kluwer Academic Publishers, Dordrecht, 1999)zbMATHGoogle Scholar
  25. 25.
    R.P. Agarwal, D. O’Regan, V. Lakshmikantham, Nonlinear Anal. Real-World Appl. 4, 223–244 (2003)MathSciNetGoogle Scholar
  26. 26.
    R.P. Agarwal, D. O’Regan, R. Precup, Nonlinear Anal.: Real World Appl. 6, 123–131 (2005)Google Scholar
  27. 27.
    R.P. Agarwal, D. O’Regan, P.K. Palamides, Math. Methods Appl. Sci. 29, 49–66 (2006)MathSciNetGoogle Scholar
  28. 28.
    R.P. Agarwal, H.B. Thompson, C.C. Tisdell, Dyn. Syst. Appl. 16, 595–609 (2007)Google Scholar
  29. 29.
    A.E. Alexander, P. Johnson, Colloid Science, vol. 1 (Oxford at the Clarendon Press, London, 1949), pp. 100–120Google Scholar
  30. 30.
    N. Anderson, A.M. Arthurs, Bull. Math. Biol. 42, 131–135 (1980)Google Scholar
  31. 31.
    N. Anderson, A.M. Arthurs, Bull. Math. Biol. 43, 341–346 (1981)MathSciNetGoogle Scholar
  32. 32.
    N. Anderson, A.M. Arthurs, Bull. Math. Biol. 47, 145–153 (1985)MathSciNetGoogle Scholar
  33. 33.
    P. Bailey, L. Shampine, P. Waltman, Nonlinear Two Point Boundary Value Problems (Academic, New York, 1968)zbMATHGoogle Scholar
  34. 34.
    W.H.H. Banks, Journal de Mecanique Theorique et Appliquee 2, 375–392 (1983)Google Scholar
  35. 35.
    H. Bateman, Partial Differential Equations of Mathematical Physics (Cambridge University Press, London, 1959)zbMATHGoogle Scholar
  36. 36.
    P. Bates, P. Fife, R. Gardner, C.K.R.J. Jones, SIAM J. Math. Anal. 28, 60–93 (1997)MathSciNetzbMATHGoogle Scholar
  37. 37.
    V.A. Batyshchev, J. Appl. Math. Mech. 55, 315–321 (1991)MathSciNetGoogle Scholar
  38. 38.
    J. Baxley, SIAM J. Appl. Math. 48, 497–505 (1988)MathSciNetzbMATHGoogle Scholar
  39. 39.
    J. Baxley, S.B. Robinson, J. Comput. Appl. Math. 88, 203–224 (1998)MathSciNetGoogle Scholar
  40. 40.
    Z. Belhachmi, B. Brighi, K. Taous, Eur. J. Appl. Math. 12, 513–528 (2001)Google Scholar
  41. 41.
    F. Bernis, L.A. Peletier, SIAM J. Math. Anal. 27, 515–527 (1996)MathSciNetzbMATHGoogle Scholar
  42. 42.
    W.G. Bickley, Philos. Mag. 23, 727 (1937)Google Scholar
  43. 43.
    K.E. Bisshopp, D.C. Drucker, Q. Appl. Math. 3, 272–275 (1945)Google Scholar
  44. 44.
    P.A. Blythe, P.G. Daniels, P.G. Simpkins, Proc. R. Soc. Lond. A 380, 119–136 (1982)Google Scholar
  45. 45.
    L. Bougoffa, Appl. Math. Lett. 21, 275–278 (2008)MathSciNetGoogle Scholar
  46. 46.
    A. Callegari, M.B. Friedman, J. Math. Anal. Appl. 21, 510–529 (1968)MathSciNetGoogle Scholar
  47. 47.
    P.L. Chambré, J. Chem. Phys. 20, 1795 (1952)Google Scholar
  48. 48.
    C.Y. Chan, Y.C. Hon, Q. Appl. Math. 46, 711–726 (1988)Google Scholar
  49. 49.
    J.V. Chaparova, L.A. Peletier, S.A. Tersian, Appl. Math. Lett. 17, 1207–1212 (2004)MathSciNetGoogle Scholar
  50. 50.
    S.J. Charman, SIAM J. Appl. Math. 55, 1233–1258 (1995)MathSciNetzbMATHGoogle Scholar
  51. 51.
    D.S. Cohen, SIAM J. Appl. Math. 20, 1–13 (1971)MathSciNetzbMATHGoogle Scholar
  52. 52.
    A. Constantin, Annali di Mathematica pura ed applicata 176, 379–394 (1999)Google Scholar
  53. 53.
    M. Countryman, R. Kannan, Comput. Math. Appl. 28, 121–130 (1994)MathSciNetGoogle Scholar
  54. 54.
    H.T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962)Google Scholar
  55. 55.
    R.W. Dickey, Arch. Ration. Mech. Anal. 26, 219–236 (1967)Google Scholar
  56. 56.
    R.W. Dickey, Q. Appl. Math. 47, 571–581 (1989)Google Scholar
  57. 57.
    L.H. Erbe, J. Differ. Equ. 7, 459–472 (1970)Google Scholar
  58. 58.
    E. Fermi, Rend Accad. Naz. del Lincei Cl. Sci. Fis. Mat. e Nat. 6, 602–607 (1927)Google Scholar
  59. 59.
    U. Flesch, J. Theor. Biol. 54, 285–287 (1975)Google Scholar
  60. 60.
    R.L. Fosdick, K.R. Rajagopal, Proc. R. Soc. Lond. Ser. A 369, 351–377 (1980)Google Scholar
  61. 61.
    R.A. Gardner, C.K.R.T. Jones, Indiana Univ. Math. J. 38, 1197–1222 (1989)Google Scholar
  62. 62.
    J. Goncerzewicz, H. Marcinkowska, W. Okrasinski, K. Tabisz, Zastosow Mat. 16, 246–261 (1978)Google Scholar
  63. 63.
    V. Goyal, Appl. Math. Lett. 19, 1406–1408 (2006)MathSciNetGoogle Scholar
  64. 64.
    A. Granas, R.B. Guenther, J.W. Lee, ZAMM 61, 204–205 (1981)Google Scholar
  65. 65.
    B.F. Gray, J. Theor. Biol. 82, 473–476 (1980)Google Scholar
  66. 66.
    M. Gregus, Acta Math. Univ. Comen. 40, 161–168 (1982)Google Scholar
  67. 67.
    M. Guedda, Electron. J. Differ. Equ. 49, 1–4 (2001)Google Scholar
  68. 68.
    P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964)zbMATHGoogle Scholar
  69. 69.
    S.P. Hasting, J.B. McLeon, Arch. Ration. Mech. Anal. 73, 31–51 (1980)Google Scholar
  70. 70.
    B. Helffer, F.B. Weissler, Eur. J. Appl. Math. 9, 223–243 (1998)Google Scholar
  71. 71.
    P. Hiltmann, P. Lory, Bull. Math. Biol. 45, 661–664 (1983)Google Scholar
  72. 72.
    J. Jacobsen, K. Schmitt, in Handbook of Differential Equations, Ordinary Differential Equations, vol. 1, ed. by A. Canada, P. Drabek, A. Fonda (Elsevier B.V, Amsterdam, 2004), pp. 359–435Google Scholar
  73. 73.
    J. Janus, J. Myjak, Nonlinear Anal. 23, 953–970 (1994)MathSciNetGoogle Scholar
  74. 74.
    D. Jiang, R.P. Agarwal, Appl. Math. Lett. 15, 445–451 (2002)MathSciNetGoogle Scholar
  75. 75.
    K.N. Johnson, Q. Appl. Math. 55, 537–550 (1997)Google Scholar
  76. 76.
    D.D. Joseph, T.S. Lundgren, Arch. Ration. Mech. Anal. 49, 241–269 (1973)Google Scholar
  77. 77.
    R.E. Kidder, J. Appl. Mech. 27, 329–332 (1957)Google Scholar
  78. 78.
    H. Lempke, J. Reine Angew. Math. 142, 118 (1913)MathSciNetGoogle Scholar
  79. 79.
    D. Levi, P. Winternitz, NATO ASI Ser. Ser. B: Phys. 278 (1990)Google Scholar
  80. 80.
    S.H. Lin, J. Theor. Biol. 60, 449–457 (1976)Google Scholar
  81. 81.
    D.L.S. McElwain, J. Theor. Biol. 71, 255–263 (1978)Google Scholar
  82. 82.
    A. Misir, A. Tiryaki, Appl. Math. Lett. 21, 1204–1208 (2008)MathSciNetGoogle Scholar
  83. 83.
    P. Moon, D.E. Spencer, Field Theory Handbook (Springer, Berlin, 1961)zbMATHGoogle Scholar
  84. 84.
    J.W. Mooney, Q. Appl. Math. 36, 305–314 (1978)Google Scholar
  85. 85.
    T.Y. Na, Computational Methods in Engineering Boundary Value Problems (Academic, New York, 1979)zbMATHGoogle Scholar
  86. 86.
    A. Nachman, A. Callegari, SIAM J. Appl. Math. 38, 275–282 (1980)MathSciNetzbMATHGoogle Scholar
  87. 87.
    S.K. Ntouyas, P.K. Palamides, Nonlinear Oscil. 4, 326–344 (2001)MathSciNetGoogle Scholar
  88. 88.
    D. O’Regan, Theory of Singular Boundary Value Problems (World Scientific, Singapore, 1994)zbMATHGoogle Scholar
  89. 89.
    D. O’Regan, Proc. Edinb. Math. Soc. 39, 505–523 (1996)MathSciNetGoogle Scholar
  90. 90.
    D. O’Regan, Nonlinear Anal. 47, 1163–1174 (2001)MathSciNetGoogle Scholar
  91. 91.
    D. O’Regan, Appl. Math. Comput. 205, 438–441 (2008)MathSciNetGoogle Scholar
  92. 92.
    P.K. Palamides, Math. Comput. Model. 38, 177–189 (2003)MathSciNetGoogle Scholar
  93. 93.
    O.W. Richardson, The Emission of Electricity from Hot Bodies (Longmans, Green, New York, 1921)Google Scholar
  94. 94.
    N. Riley, J. Fluid Mech. 18, 577–586 (1964)MathSciNetGoogle Scholar
  95. 95.
    H. Schlichting, Boundary Layer Theory, 4th edn. (McGraw-Hill, New York, 1960)zbMATHGoogle Scholar
  96. 96.
    V. Seda, in Proceedings of the Equadiff III (1973), pp. 145–153Google Scholar
  97. 97.
    V. Seda, Acta F.R.N. Univ. Comen. Math. 30, 95–119 (1975)Google Scholar
  98. 98.
    V. Seda, Acta Math. Univ. Comen. XXXIX, 97–113 (1980)Google Scholar
  99. 99.
    S.K. Sen, H. Agarwal, Comput. Math. Appl. 49, 1499–1514 (2005)MathSciNetGoogle Scholar
  100. 100.
    S.K. Sen, H. Agarwal, Int. J. Comput. Math. 83, 663–674 (2006)MathSciNetGoogle Scholar
  101. 101.
    S.K. Sen, H. Agarwal, T. Samanta, Comput. Math. Appl. 51, 1021–1046 (2006)MathSciNetGoogle Scholar
  102. 102.
    J.Y. Shin, J. Korean Math. Soc. 32, 761–773 (1995)MathSciNetGoogle Scholar
  103. 103.
    J.Y. Shin, J. Math. Anal. Appl. 212, 443–451 (1997)MathSciNetGoogle Scholar
  104. 104.
    E. Soewono, K. Vajravelu, R. Mohapatra, J. Math. Anal. Appl. 159, 251–270 (1991)MathSciNetGoogle Scholar
  105. 105.
    E. Soewona, K. Vajravelu, R.N. Mohapatra, Nonlinear Anal. 18, 93–98 (1992)MathSciNetGoogle Scholar
  106. 106.
    L.H. Tanner, J. Phys. D: Appl. Phys. 12, 1473–1484 (1979)Google Scholar
  107. 107.
    S. Tersian, J. Chaparova, J. Math. Anal. Appl. 272, 223–239 (2002)MathSciNetGoogle Scholar
  108. 108.
    L.H. Thomas, Proc. Camb. Philos. Soc. 23, 542–548 (1927)Google Scholar
  109. 109.
    H.B. Thompson, Nonlinear Anal. 53, 97–110 (2003)MathSciNetGoogle Scholar
  110. 110.
    H.L. Thron, Pfüg. Arch. Ges. Physiol. 263, 109Google Scholar
  111. 111.
    W.C. Troy, SIAM J. Math. Anal. 24, 155–171 (1993)MathSciNetzbMATHGoogle Scholar
  112. 112.
    E.O. Tuck, L.W. Schwartz, SIAM Rev. 32, 453–469 (1990)MathSciNetGoogle Scholar
  113. 113.
    K. Vajravelu, J.R. Cannon, D. Rollins, J. Math. Anal. Appl. 250, 204–221 (2000)MathSciNetGoogle Scholar
  114. 114.
    G.W. Walker, Proc. R. Soc. A91, 410 (1915)Google Scholar
  115. 115.
    C.Y. Wang, Phys. Fluids 27, 1915–1917 (1984)MathSciNetGoogle Scholar
  116. 116.
    J. Wang, W. Gao, Z. Zhang, J. Math. Anal. Appl. 233, 246–256 (1999)MathSciNetGoogle Scholar
  117. 117.
    J.Y. Wang, Z.X. Zhang, ZAMP 49, 506–513 (1998)Google Scholar
  118. 118.
    S.K. Wilson, B.R. Duffy, S.H. Davis, Eur. J. Appl. Math. 12, 233–252 (2001)Google Scholar
  119. 119.
    C. Yang, J. Hou, Bound. Value Probl. 2013, 142 (2013)Google Scholar
  120. 120.
    G.C. Yang, Appl. Math. Lett. 16, 827–832 (2003)MathSciNetGoogle Scholar
  121. 121.
    G.C. Yang, Appl. Math. Lett. 17, 1261–1265 (2004)MathSciNetGoogle Scholar
  122. 122.
    L. Zheng, J. He, Dyn. Syst. Appl. 8, 133–145 (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ravi P. Agarwal
    • 1
    Email author
  • Simona Hodis
    • 1
  • Donal O’Regan
    • 2
  1. 1.Department of MathematicsTexas A&M University–KingsvilleKingsvilleUSA
  2. 2.Department of MathematicsNational University of IrelandGalwayIreland

Personalised recommendations