Nonlinear Boundary Value Problems
Chapter
First Online:
Abstract
In this chapter, mainly we shall show the importance of the method of upper and lower solutions [6, 13, 22, 24] to nonlinear boundary value problems which appear in real-world phenomena. The main advantage of this method is that besides proving the existence of the solutions it also provides upper and lower bounds on the solutions. These bounds are of immense value in numerical computations of the solutions [99, 100, 101].
References
- 1.J.A.D. Ackroyd, ZAMP 29, 729–741 (1978)MathSciNetGoogle Scholar
- 2.A. Acrivos, M.J. Shah, E.E. Peterson, A.I.Ch.E.J. 6, 312–317 (1960)Google Scholar
- 3.R.P. Agarwal, Boundary Value Problems for Higher Order Differential Equations (World Scientific, Singapore, 1986)Google Scholar
- 4.R.P. Agarwal, D. O’Regan, IMA J. Appl. Math. 65, 173–198 (2000)Google Scholar
- 5.R.P. Agarwal, D. O’Regan, IMA J. Appl. Math. 66, 621–635 (2001)Google Scholar
- 6.R.P. Agarwal, D. O’Regan, Infinite Interval Problems for Differential, Difference and Integral Equations (Kluwer Academic Publishers, Dordrecht, 2001)zbMATHGoogle Scholar
- 7.R.P. Agarwal, D. O’Regan, Mathematika 48, 273–292 (2001)MathSciNetGoogle Scholar
- 8.R.P. Agarwal, D. O’Regan, Dyn. Contin. Discret. Impuls. Syst. Ser. B: Appl. Algorithms 9, 481–488 (2002)Google Scholar
- 9.R.P. Agarwal, D. O’Regan, Math. Probl. Eng. 8, 135–142 (2002)MathSciNetGoogle Scholar
- 10.R.P. Agarwal, D. O’Regan, Stud. Appl. Math. 108, 245–257 (2002)MathSciNetGoogle Scholar
- 11.R.P. Agarwal, D. O’Regan, NoDEA - Nonlinear Differ. Equ. Appl. 9, 419–440 (2002)MathSciNetzbMATHGoogle Scholar
- 12.R.P. Agarwal, D. O’Regan, Math. Probl. Eng. 8, 143–150 (2002)MathSciNetGoogle Scholar
- 13.R.P. Agarwal, D. O’Regan, Singular Differential and Integral Equations with Applications (Kluwer Academic Publishers, Dordrecht, 2002)zbMATHGoogle Scholar
- 14.R.P. Agarwal, D. O’Regan, Mathematika 49, 129–140 (2002)MathSciNetGoogle Scholar
- 15.R.P. Agarwal, D. O’Regan, Int. J. Nonlinear Mech. 38, 1369–1376 (2003)Google Scholar
- 16.R.P. Agarwal, D. O’Regan, J. Aust. Math. Soc. Ser. B - Appl. Math. 45, 167–179 (2003)Google Scholar
- 17.R.P. Agarwal, D. O’Regan, Dyn. Contin. Discret. Impuls. Syst. 10, 965–972 (2003)Google Scholar
- 18.R.P. Agarwal, D. O’Regan, Methods Appl. Anal. 10, 363–376 (2003)MathSciNetGoogle Scholar
- 19.R.P. Agarwal, D. O’Regan, Stud. Appl. Math. 111, 339–358 (2003)MathSciNetGoogle Scholar
- 20.R.P. Agarwal, D. O’Regan, ZAMM 83, 344–350 (2003)Google Scholar
- 21.R.P. Agarwal, D. O’Regan, Int. J. Nonlinear Mech. 39, 779–784 (2004)Google Scholar
- 22.R.P. Agarwal, D. O’Regan, Handbook of Differential Equations, Ordinary Differential Equations, vol. 1, ed. by A. Canada, P. Drabek, A. Fonda (Elsevier B.V., Amsterdam, 2004), pp. 1–68Google Scholar
- 23.R.P. Agarwal, P.J.Y. Wong, in Approximation Theory, in Memory of A.K. Varma, ed. by N.K. Govil et al. (Marcal Dekker, New York, 1998), pp. 1–41Google Scholar
- 24.R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Positive Solutions of Differential, Difference and Integral Equations (Kluwer Academic Publishers, Dordrecht, 1999)zbMATHGoogle Scholar
- 25.R.P. Agarwal, D. O’Regan, V. Lakshmikantham, Nonlinear Anal. Real-World Appl. 4, 223–244 (2003)MathSciNetGoogle Scholar
- 26.R.P. Agarwal, D. O’Regan, R. Precup, Nonlinear Anal.: Real World Appl. 6, 123–131 (2005)Google Scholar
- 27.R.P. Agarwal, D. O’Regan, P.K. Palamides, Math. Methods Appl. Sci. 29, 49–66 (2006)MathSciNetGoogle Scholar
- 28.R.P. Agarwal, H.B. Thompson, C.C. Tisdell, Dyn. Syst. Appl. 16, 595–609 (2007)Google Scholar
- 29.A.E. Alexander, P. Johnson, Colloid Science, vol. 1 (Oxford at the Clarendon Press, London, 1949), pp. 100–120Google Scholar
- 30.N. Anderson, A.M. Arthurs, Bull. Math. Biol. 42, 131–135 (1980)Google Scholar
- 31.N. Anderson, A.M. Arthurs, Bull. Math. Biol. 43, 341–346 (1981)MathSciNetGoogle Scholar
- 32.N. Anderson, A.M. Arthurs, Bull. Math. Biol. 47, 145–153 (1985)MathSciNetGoogle Scholar
- 33.P. Bailey, L. Shampine, P. Waltman, Nonlinear Two Point Boundary Value Problems (Academic, New York, 1968)zbMATHGoogle Scholar
- 34.W.H.H. Banks, Journal de Mecanique Theorique et Appliquee 2, 375–392 (1983)Google Scholar
- 35.H. Bateman, Partial Differential Equations of Mathematical Physics (Cambridge University Press, London, 1959)zbMATHGoogle Scholar
- 36.P. Bates, P. Fife, R. Gardner, C.K.R.J. Jones, SIAM J. Math. Anal. 28, 60–93 (1997)MathSciNetzbMATHGoogle Scholar
- 37.V.A. Batyshchev, J. Appl. Math. Mech. 55, 315–321 (1991)MathSciNetGoogle Scholar
- 38.J. Baxley, SIAM J. Appl. Math. 48, 497–505 (1988)MathSciNetzbMATHGoogle Scholar
- 39.J. Baxley, S.B. Robinson, J. Comput. Appl. Math. 88, 203–224 (1998)MathSciNetGoogle Scholar
- 40.Z. Belhachmi, B. Brighi, K. Taous, Eur. J. Appl. Math. 12, 513–528 (2001)Google Scholar
- 41.F. Bernis, L.A. Peletier, SIAM J. Math. Anal. 27, 515–527 (1996)MathSciNetzbMATHGoogle Scholar
- 42.W.G. Bickley, Philos. Mag. 23, 727 (1937)Google Scholar
- 43.K.E. Bisshopp, D.C. Drucker, Q. Appl. Math. 3, 272–275 (1945)Google Scholar
- 44.P.A. Blythe, P.G. Daniels, P.G. Simpkins, Proc. R. Soc. Lond. A 380, 119–136 (1982)Google Scholar
- 45.L. Bougoffa, Appl. Math. Lett. 21, 275–278 (2008)MathSciNetGoogle Scholar
- 46.A. Callegari, M.B. Friedman, J. Math. Anal. Appl. 21, 510–529 (1968)MathSciNetGoogle Scholar
- 47.P.L. Chambré, J. Chem. Phys. 20, 1795 (1952)Google Scholar
- 48.C.Y. Chan, Y.C. Hon, Q. Appl. Math. 46, 711–726 (1988)Google Scholar
- 49.J.V. Chaparova, L.A. Peletier, S.A. Tersian, Appl. Math. Lett. 17, 1207–1212 (2004)MathSciNetGoogle Scholar
- 50.S.J. Charman, SIAM J. Appl. Math. 55, 1233–1258 (1995)MathSciNetzbMATHGoogle Scholar
- 51.D.S. Cohen, SIAM J. Appl. Math. 20, 1–13 (1971)MathSciNetzbMATHGoogle Scholar
- 52.A. Constantin, Annali di Mathematica pura ed applicata 176, 379–394 (1999)Google Scholar
- 53.M. Countryman, R. Kannan, Comput. Math. Appl. 28, 121–130 (1994)MathSciNetGoogle Scholar
- 54.H.T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962)Google Scholar
- 55.R.W. Dickey, Arch. Ration. Mech. Anal. 26, 219–236 (1967)Google Scholar
- 56.R.W. Dickey, Q. Appl. Math. 47, 571–581 (1989)Google Scholar
- 57.L.H. Erbe, J. Differ. Equ. 7, 459–472 (1970)Google Scholar
- 58.E. Fermi, Rend Accad. Naz. del Lincei Cl. Sci. Fis. Mat. e Nat. 6, 602–607 (1927)Google Scholar
- 59.U. Flesch, J. Theor. Biol. 54, 285–287 (1975)Google Scholar
- 60.R.L. Fosdick, K.R. Rajagopal, Proc. R. Soc. Lond. Ser. A 369, 351–377 (1980)Google Scholar
- 61.R.A. Gardner, C.K.R.T. Jones, Indiana Univ. Math. J. 38, 1197–1222 (1989)Google Scholar
- 62.J. Goncerzewicz, H. Marcinkowska, W. Okrasinski, K. Tabisz, Zastosow Mat. 16, 246–261 (1978)Google Scholar
- 63.V. Goyal, Appl. Math. Lett. 19, 1406–1408 (2006)MathSciNetGoogle Scholar
- 64.A. Granas, R.B. Guenther, J.W. Lee, ZAMM 61, 204–205 (1981)Google Scholar
- 65.B.F. Gray, J. Theor. Biol. 82, 473–476 (1980)Google Scholar
- 66.M. Gregus, Acta Math. Univ. Comen. 40, 161–168 (1982)Google Scholar
- 67.M. Guedda, Electron. J. Differ. Equ. 49, 1–4 (2001)Google Scholar
- 68.P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964)zbMATHGoogle Scholar
- 69.S.P. Hasting, J.B. McLeon, Arch. Ration. Mech. Anal. 73, 31–51 (1980)Google Scholar
- 70.B. Helffer, F.B. Weissler, Eur. J. Appl. Math. 9, 223–243 (1998)Google Scholar
- 71.P. Hiltmann, P. Lory, Bull. Math. Biol. 45, 661–664 (1983)Google Scholar
- 72.J. Jacobsen, K. Schmitt, in Handbook of Differential Equations, Ordinary Differential Equations, vol. 1, ed. by A. Canada, P. Drabek, A. Fonda (Elsevier B.V, Amsterdam, 2004), pp. 359–435Google Scholar
- 73.J. Janus, J. Myjak, Nonlinear Anal. 23, 953–970 (1994)MathSciNetGoogle Scholar
- 74.D. Jiang, R.P. Agarwal, Appl. Math. Lett. 15, 445–451 (2002)MathSciNetGoogle Scholar
- 75.K.N. Johnson, Q. Appl. Math. 55, 537–550 (1997)Google Scholar
- 76.D.D. Joseph, T.S. Lundgren, Arch. Ration. Mech. Anal. 49, 241–269 (1973)Google Scholar
- 77.R.E. Kidder, J. Appl. Mech. 27, 329–332 (1957)Google Scholar
- 78.H. Lempke, J. Reine Angew. Math. 142, 118 (1913)MathSciNetGoogle Scholar
- 79.D. Levi, P. Winternitz, NATO ASI Ser. Ser. B: Phys. 278 (1990)Google Scholar
- 80.S.H. Lin, J. Theor. Biol. 60, 449–457 (1976)Google Scholar
- 81.D.L.S. McElwain, J. Theor. Biol. 71, 255–263 (1978)Google Scholar
- 82.A. Misir, A. Tiryaki, Appl. Math. Lett. 21, 1204–1208 (2008)MathSciNetGoogle Scholar
- 83.P. Moon, D.E. Spencer, Field Theory Handbook (Springer, Berlin, 1961)zbMATHGoogle Scholar
- 84.J.W. Mooney, Q. Appl. Math. 36, 305–314 (1978)Google Scholar
- 85.T.Y. Na, Computational Methods in Engineering Boundary Value Problems (Academic, New York, 1979)zbMATHGoogle Scholar
- 86.A. Nachman, A. Callegari, SIAM J. Appl. Math. 38, 275–282 (1980)MathSciNetzbMATHGoogle Scholar
- 87.S.K. Ntouyas, P.K. Palamides, Nonlinear Oscil. 4, 326–344 (2001)MathSciNetGoogle Scholar
- 88.D. O’Regan, Theory of Singular Boundary Value Problems (World Scientific, Singapore, 1994)zbMATHGoogle Scholar
- 89.D. O’Regan, Proc. Edinb. Math. Soc. 39, 505–523 (1996)MathSciNetGoogle Scholar
- 90.D. O’Regan, Nonlinear Anal. 47, 1163–1174 (2001)MathSciNetGoogle Scholar
- 91.D. O’Regan, Appl. Math. Comput. 205, 438–441 (2008)MathSciNetGoogle Scholar
- 92.P.K. Palamides, Math. Comput. Model. 38, 177–189 (2003)MathSciNetGoogle Scholar
- 93.O.W. Richardson, The Emission of Electricity from Hot Bodies (Longmans, Green, New York, 1921)Google Scholar
- 94.N. Riley, J. Fluid Mech. 18, 577–586 (1964)MathSciNetGoogle Scholar
- 95.H. Schlichting, Boundary Layer Theory, 4th edn. (McGraw-Hill, New York, 1960)zbMATHGoogle Scholar
- 96.V. Seda, in Proceedings of the Equadiff III (1973), pp. 145–153Google Scholar
- 97.V. Seda, Acta F.R.N. Univ. Comen. Math. 30, 95–119 (1975)Google Scholar
- 98.V. Seda, Acta Math. Univ. Comen. XXXIX, 97–113 (1980)Google Scholar
- 99.S.K. Sen, H. Agarwal, Comput. Math. Appl. 49, 1499–1514 (2005)MathSciNetGoogle Scholar
- 100.S.K. Sen, H. Agarwal, Int. J. Comput. Math. 83, 663–674 (2006)MathSciNetGoogle Scholar
- 101.S.K. Sen, H. Agarwal, T. Samanta, Comput. Math. Appl. 51, 1021–1046 (2006)MathSciNetGoogle Scholar
- 102.J.Y. Shin, J. Korean Math. Soc. 32, 761–773 (1995)MathSciNetGoogle Scholar
- 103.J.Y. Shin, J. Math. Anal. Appl. 212, 443–451 (1997)MathSciNetGoogle Scholar
- 104.E. Soewono, K. Vajravelu, R. Mohapatra, J. Math. Anal. Appl. 159, 251–270 (1991)MathSciNetGoogle Scholar
- 105.E. Soewona, K. Vajravelu, R.N. Mohapatra, Nonlinear Anal. 18, 93–98 (1992)MathSciNetGoogle Scholar
- 106.L.H. Tanner, J. Phys. D: Appl. Phys. 12, 1473–1484 (1979)Google Scholar
- 107.S. Tersian, J. Chaparova, J. Math. Anal. Appl. 272, 223–239 (2002)MathSciNetGoogle Scholar
- 108.L.H. Thomas, Proc. Camb. Philos. Soc. 23, 542–548 (1927)Google Scholar
- 109.H.B. Thompson, Nonlinear Anal. 53, 97–110 (2003)MathSciNetGoogle Scholar
- 110.H.L. Thron, Pfüg. Arch. Ges. Physiol. 263, 109Google Scholar
- 111.W.C. Troy, SIAM J. Math. Anal. 24, 155–171 (1993)MathSciNetzbMATHGoogle Scholar
- 112.E.O. Tuck, L.W. Schwartz, SIAM Rev. 32, 453–469 (1990)MathSciNetGoogle Scholar
- 113.K. Vajravelu, J.R. Cannon, D. Rollins, J. Math. Anal. Appl. 250, 204–221 (2000)MathSciNetGoogle Scholar
- 114.G.W. Walker, Proc. R. Soc. A91, 410 (1915)Google Scholar
- 115.C.Y. Wang, Phys. Fluids 27, 1915–1917 (1984)MathSciNetGoogle Scholar
- 116.J. Wang, W. Gao, Z. Zhang, J. Math. Anal. Appl. 233, 246–256 (1999)MathSciNetGoogle Scholar
- 117.J.Y. Wang, Z.X. Zhang, ZAMP 49, 506–513 (1998)Google Scholar
- 118.S.K. Wilson, B.R. Duffy, S.H. Davis, Eur. J. Appl. Math. 12, 233–252 (2001)Google Scholar
- 119.C. Yang, J. Hou, Bound. Value Probl. 2013, 142 (2013)Google Scholar
- 120.G.C. Yang, Appl. Math. Lett. 16, 827–832 (2003)MathSciNetGoogle Scholar
- 121.G.C. Yang, Appl. Math. Lett. 17, 1261–1265 (2004)MathSciNetGoogle Scholar
- 122.L. Zheng, J. He, Dyn. Syst. Appl. 8, 133–145 (1999)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019