Advertisement

Second- and Higher Order Differential Equations

  • Ravi P. AgarwalEmail author
  • Simona Hodis
  • Donal O’Regan
Chapter
Part of the Problem Books in Mathematics book series (PBM)

Abstract

Consider the second-order linear differential equation \(p_0(t)y''+p_1(t)y'+p_2(t)y~=~r(t),\) where the functions \(p_0,p_1,p_2\), and r are continuous in an open interval \(I=(\alpha ,\beta ),\) and \(p_0(t)\ne 0\) for all \(t\in I\) [1, 2]. For (3.1) the corresponding homogeneous differential equation \(p_0(t)y''+p_1(t)y'+p_2(t)y~=~0\) plays an important role.

References

  1. 1.
    R.P. Agarwal, D. O’Regan, An Introduction to Ordinary Differential Equations (Springer, New York, 2008) CrossRefGoogle Scholar
  2. 2.
    R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations with Special Functions, Fourier Series and Boundary Value Problems (Springer, New York, 2009)CrossRefGoogle Scholar
  3. 3.
    C. Barton, S. Raynor, Bull. Math. Biophys. 30, 663–680 (1968)Google Scholar
  4. 4.
    J.P. Brady, C. Marmasse, Bull. Math. Biophys. 26, 77–81 (1964)Google Scholar
  5. 5.
    C.J. Brokow, Nature 209, 161–163 (1966)CrossRefGoogle Scholar
  6. 6.
    E.D. Domar, Am. Econ. Rev. 798–827, (1944)Google Scholar
  7. 7.
    C.L. Dym, E.S. Ivey, Principles of Mathematical Modeling (Academic, New York, 1980)zbMATHGoogle Scholar
  8. 8.
    G. Gondolfo, Mathematical Models in Economic Dynamics (North Holland, Amsterdam, 1971)Google Scholar
  9. 9.
    O.C. Herfindahl, A.V. Kneese, Economic Theory for Natural Resources (Charles E. Merrill, Columbus, 1974)Google Scholar
  10. 10.
    Z. Kopal, Icarus 2, 376–395 (1963)CrossRefGoogle Scholar
  11. 11.
    J.P. Lewis, Introduction to Mathematics for Students of Economics (Macmillan, New York, 1969)CrossRefGoogle Scholar
  12. 12.
    H. McCallion, Vibration of Linear Mechanical Systems (Halsted Press, New York, 1973)Google Scholar
  13. 13.
    G.A. McLennan, Bull. Seismol. Soc. Am. 59, 1591–1598 (1969)Google Scholar
  14. 14.
    I. Mirsky, Bull. Math. Biophys. 29, 311–318 (1967)CrossRefGoogle Scholar
  15. 15.
    E. Petersen, Chemical Reaction Analysis (Prentice-Hall, Englewood Cliffs, 1965)Google Scholar
  16. 16.
    A.W. Phillips, Econ. J. 64, 290–323 (1954)CrossRefGoogle Scholar
  17. 17.
    N. Rashevsky, Bull. Math. Biophys. 30, 510–518 (1968)Google Scholar
  18. 18.
    H.W. Reddick, F.H. Miller, Advanced Mathematics for Engineers, 3rd edn. (Wiley, New York, 1956)zbMATHGoogle Scholar
  19. 19.
    S. Stewart, Air Disasters (Barnes & Noble, New York, 1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ravi P. Agarwal
    • 1
    Email author
  • Simona Hodis
    • 1
  • Donal O’Regan
    • 2
  1. 1.Department of MathematicsTexas A&M University–KingsvilleKingsvilleUSA
  2. 2.Department of MathematicsNational University of IrelandGalwayIreland

Personalised recommendations