Advertisement

Spatial Conservation Prioritization for the Anuran Fauna of South America

  • Tiago S. Vasconcelos
  • Fernando R. da Silva
  • Tiago G. dos Santos
  • Vitor H. M. Prado
  • Diogo B. Provete
Chapter

Abstract

South America is the most biologically diverse continent on the planet, including anuran amphibians. However, the continent has been experiencing high levels of habitat degradation, and amphibians are considered the most endangered class of the vertebrate group globally. Therefore, the establishment of effective actions for the anuran protection in the continent is urgent. Here, we generate a spatial conservation prioritization of anurans in South America addressing different human-related and biological diversity metrics using the software MARXAN. We found that the anuran fauna of South America can be totally represented by the selection of ~19.53% of the total area of the continent. Contiguous selected areas are mainly located in the Tropical Andes and the Atlantic Forest coast. To a lesser extent, the selected areas can be also found in specific areas of Venezuela, the Brazilian Amazonian forest, and the temperate Chilean forests. In general, the contiguous areas represent forested areas within rough topographies of tropical countries and should be priority areas for anuran conservation in South America. Other areas within the tropical region, as well as in the southern temperate regions/countries, are less continuous and should involve more complex evaluations by decision-makers to foster reserve creation.

Keywords

Anura Biological conservation Conservation biogeography MARXAN Neotropics Spatial prioritization 

Notes

Acknowledgments

The authors have been continuously supported by research grants and/or fellowships from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2011/18510-0; 2013/50714-0; 2016/13949-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 2037/2014-9; 431012/2016-4; 308687/2016-17; 114613/2018-4), and University Research and Scientific Production Support Program of the Goias State University (PROBIP/UEG).

References

  1. Ardron JA, Possingham HP, Klein CJ (2010) Marxan good practices handbook. Version 2. Pacific Marine Analysis and Research Association, VictoriaGoogle Scholar
  2. Ball IR, Possingham HP (2000) Marxan (v 1.8.6): marine reserve design using spatially explicit annealing. A manual prepared for the Great Barrier Reef Marine Park AuthorityGoogle Scholar
  3. Ball IR, Possingham HP, Watts M (2009) Marxan and relatives: software for spatial conservation prioritisation. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford, UK, pp 185–195Google Scholar
  4. Barnosky AD, Matzke N, Tomiya S et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57.  https://doi.org/10.1038/nature09678CrossRefPubMedGoogle Scholar
  5. Becker CG, Fonseca CR, Haddad CFB et al (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777CrossRefGoogle Scholar
  6. Becker CG, Rodriguez D, Lambertini C et al (2015) Historical dynamics of Batrachochytrium dendrobatidis in Amazonia. Ecography 39:954.  https://doi.org/10.1111/ecog.02055CrossRefGoogle Scholar
  7. Bovo RP, Andrade DV, Toledo LF et al (2016) Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis. Dis Aquat Org 117:245–252CrossRefGoogle Scholar
  8. Carvalho SB, Britto JC, Crespo EJ et al (2011) Incorporating evolutionary processes into conservation planning using species distribution data: a case study with the western Mediterranean herpetofauna. Divers Distrib 17:408–421.  https://doi.org/10.1111/j.1472-4642.2011.00752.xCrossRefGoogle Scholar
  9. Catenazzi A (2015) State of the World’s amphibians. Annu Rev Environ Resour 40:91–119CrossRefGoogle Scholar
  10. Dixo M, Metzger JP (2010) The matrix-tolerance hypothesis? An empirical test with frogs in the Atlantic Forest. Biodivers Conserv 19:3059–3071CrossRefGoogle Scholar
  11. Dobrovolski R, Loyola R, da Fonseca GAB et al (2014) Globalizing conservation efforts to save species and enhance food production. Bioscience 64:539–545.  https://doi.org/10.1093/biosci/biu064CrossRefGoogle Scholar
  12. Duellman WE, Trueb L (1994) Biology of amphibians. John Hopkins University Press, BaltimoreGoogle Scholar
  13. Durán AP, Duffy JP, Gaston KJ (2014) Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation. Proc Biol Sci 281:20141529CrossRefGoogle Scholar
  14. Garcia RA, Cabeza M, Rahbek C et al (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579.  https://doi.org/10.1126/science.1247579CrossRefPubMedGoogle Scholar
  15. IUCN (2019) The IUCN Red List of Threatened Species. Version 2019-1. http://www.iucnredlist.org. Accessed 21 Mar 2019
  16. Kukkala AS, Moilanen A (2013) Core concepts of spatial prioritization in systematic conservation planning. Biol Rev Camb Philos 88:443–464.  https://doi.org/10.1111/brv.12008CrossRefGoogle Scholar
  17. Ladle RJ, Whittaker RJ (2011) Conservation biogeography. Wiley-Blackwell, West SussexCrossRefGoogle Scholar
  18. Lagabrielle E, Lombard AT, Harris JM et al (2018) Multi-scale multi-level marine spatial planning: a novel methodological approach applied in South Africa. PLoS One 13:e0192582.  https://doi.org/10.1371/journal.pone.0192582CrossRefPubMedPubMedCentralGoogle Scholar
  19. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253CrossRefGoogle Scholar
  20. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  21. Mittermeier RA, Robles-Gil P, Hoffmann M et al (2004) Hotspots revisited: Earths biologically richest and most endangered ecoregions. CEMEX, Mexico CityGoogle Scholar
  22. Moilanen A, Anderson BJ, Arponen A et al (2013) Edge artefacts and lost performance in national versus continental conservation priority areas. Divers Distrib 19:171–183CrossRefGoogle Scholar
  23. Primack R, Rozzi R, Massardo F, Feinsinger P (2001) Destrucción y degradación del habitat. In: Primack R, Rozzi R, Massardo F, Feinsinger P (eds) Fundamentos de conservación biológica: perspectivas latinoamericanas. Fondo de Cultura Económica, México, pp 183–223Google Scholar
  24. Scheele BC, Pasmans F, Skerratt LF et al (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363:1459–1463.  https://doi.org/10.1126/science.aav0379CrossRefPubMedGoogle Scholar
  25. Stebins RC, Cohen NW (1995) A natural history of amphibians. Princeton University Press, New JerseyGoogle Scholar
  26. UNEP-WCMC (2016) The State of Biodiversity in Latin America and the Caribbean: a mid-term review of progress towards the Aichi Biodiversity Targets. UNEP-WCMC, Cambridge, UK. Available at: https://www.cbd.int/gbo/gbo4/outlook-grulac-en.pdfGoogle Scholar
  27. Valdujo PH, Silvano DL, Colli G et al (2012) Anuran species composition and distribution patterns in the Brazilian Cerrado, a neotropical hotspot. S Am J Herpetol 7:63–78. http://www.bioone.org/doi/full/10.2994/057.007.0209CrossRefGoogle Scholar
  28. Vasconcelos TS, Doro JLP (2016) Assessing how habitat loss restricts the geographic range of Neotropical anurans. Ecol Res 31:913–921CrossRefGoogle Scholar
  29. Vasconcelos TS, Prado VHM (2019) Climate change and opposing spatial conservation priorities for anuran protection in the Brazilian hotspots. J Nat Conserv 49:118–124.  https://doi.org/10.1016/j.jnc.2019.04.003CrossRefGoogle Scholar
  30. Vasconcelos TS, Nascimento BTM, Prado VHM (2018) Expected impacts of climate change threaten the anuran diversity in the Brazilian hotspots. Ecol Evol 2018(8):7894–7906.  https://doi.org/10.1002/ece3.4357CrossRefGoogle Scholar
  31. Wake DB, Koo MS (2018) Primer: amphibians. Curr Biol 28:R1221–R1242CrossRefGoogle Scholar
  32. Whitmore TC (1997) Tropical forest disturbance, disappearance, and species loss. In: Laurance WF, Bierregaard RO Jr (eds) Tropical forest remnants: ecology, management, and conservation of fragmented communities. The University of Chicago Press, Chicago, pp 3–12Google Scholar
  33. Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23CrossRefGoogle Scholar
  34. Wildlife Conservation Society - WCS, Center for International Earth Science Information Network - CIESIN - Columbia University (2005) Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tiago S. Vasconcelos
    • 1
  • Fernando R. da Silva
    • 2
  • Tiago G. dos Santos
    • 3
  • Vitor H. M. Prado
    • 4
  • Diogo B. Provete
    • 5
  1. 1.Department of Biological SciencesSão Paulo State University (UNESP)BauruBrazil
  2. 2.Federal University of São Carlos (UFScar)SorocabaBrazil
  3. 3.Federal University of Pampa (UNIPAMPA)São GabrielBrazil
  4. 4.Goiás State University (UEG)AnápolisBrazil
  5. 5.Federal University of Mato Grosso do Sul (UFMS)Campo GrandeBrazil

Personalised recommendations