Advertisement

Biogeographic Regionalization of South American Anurans

  • Tiago S. Vasconcelos
  • Fernando R. da Silva
  • Tiago G. dos Santos
  • Vitor H. M. Prado
  • Diogo B. Provete
Chapter

Abstract

The interest in recognizing spatial patterns of species co-distributions has long led biogeographers and macroecologists to classify the world in biogeographic regions. In this chapter, we aimed to identify regions with distinct species pools, thus representing different biogeographic regions with co-occurring species of anurans in South America. Using quantitative and clustering methods, we recognized six anuran biogeographic regions in South America: two regions are predominantly tropical (named as AMAZON and DIAGONAL-AF); two regions are associated to the Andes mountains (named as MID-ANDES and NORTH-/SOUTH-ANDES); and two regions are broadly located south of the Tropic of Capricorn (named as SUB-TROPICAL and TEMP-GRASS). Using regression and variation partitioning analyses, the six distinct biogeographic regions are mainly predicted by differences in climatic gradients among the biogeographic regions (e.g., clusters located in the different tropical, subtropical, and temperate regions). Yet, the combination of rough topography and habitat structure of major biomes was also a good predictor for other biogeographic regions (e.g., the recognition of the different Andean biogeographic regions having different major biomes, such as montane forests and grasslands).

Keywords

Anura Biogeographic regions Bioregionalization Climate hypothesis recluster.region South America 

Notes

Acknowledgments

The authors have been continuously supported by research grants and/or fellowships from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2011/18510-0; 2013/50714-0; 2016/13949-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 2037/2014-9; 431012/2016-4; 308687/2016-17; 114613/2018-4), and University Research and Scientific Production Support Program of the Goias State University (PROBIP/UEG). Prof. Dr. Peter Löwenberg-Neto (UNILA) read critically the first version of this manuscript and provided insightful comments that improved it.

References

  1. Antonelli A, Nylander JAA, Persson C et al (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. PNAS 106:9749–9754.  https://doi.org/10.1073/pnas.0811421106CrossRefPubMedGoogle Scholar
  2. Antonelli A, Zizka A, Carvalho FA et al (2018) Amazonia is the primary source of Neotropical biodiversity. PNAS 115:6034–6039.  https://doi.org/10.1073/pnas.1713819115CrossRefPubMedGoogle Scholar
  3. Booth BD, Swanton CJ (2002) Assembly theory applied to weed communities. Weed Sci 50:2–13CrossRefGoogle Scholar
  4. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  5. Borcard D, Francois G, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New YorkGoogle Scholar
  7. da Silva FR, Almeida-Neto M, Prado VHM et al (2012) Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest. J Biogeogr 39:1720–1732CrossRefGoogle Scholar
  8. Dapporto L, Ramazzotti M, Fattorini S et al (2013) recluster: an unbiased clustering procedure for beta-diversity turnover. Ecography 36:1070–1075.  https://doi.org/10.1111/j.1600-0587.2013.00444.xCrossRefGoogle Scholar
  9. Dapporto L, Ciolli G, Dennis RLH et al (2015) A new procedure for extrapolating turnover regionalization at mid-small spatial scales, tested on British butterflies. Methods Ecol Evol 6:1287–1297.  https://doi.org/10.1111/2041-210X.12415CrossRefGoogle Scholar
  10. Duellman WE, Trueb L (1994) Biology of amphibians. The John Hopkins University Press, BaltimoreGoogle Scholar
  11. Ferro I, Morrone JJ (2014) Biogeographical transition zones: a search for conceptual synthesis. Biol J Linn Soc 113:1–12CrossRefGoogle Scholar
  12. Ficetola GF, Mazell F, Thuiller W (2017) Global determinants of zoogeographical boundaries. Nat Ecol Evol 1(4):0089.  https://doi.org/10.1038/s41559-017-0089CrossRefGoogle Scholar
  13. Godinho MBC, da Silva FR (2018) The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Sci Rep 8:3427.  https://doi.org/10.1038/s41598-018-21879-9CrossRefPubMedPubMedCentralGoogle Scholar
  14. Haddad CFB, Toledo LF, Prado CPA et al (2013) Guide to the amphibians of the Atlantic Forest: diversity and biology. Anolis Book, Sao PauloGoogle Scholar
  15. Holt BG, Lessard J-P, Borregaard MK et al (2013) An update of Wallace’s zoogeographic regions of the world. Science 339:74–78.  https://doi.org/10.1126/science.1228282CrossRefPubMedGoogle Scholar
  16. IBGE (Instituto Brasileiro de Geografia e Estatística) (2012) Manual tecnico da vegetacao brasileira. Instituto Brasileiro de Geografia e Estatística, Rio de JaneiroGoogle Scholar
  17. Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distribution. J Biogeogr 37:2029–2053.  https://doi.org/10.1111/j.1365-2699.2010.02375.xCrossRefGoogle Scholar
  18. Lima AP, Magnusson WE, Menin M et al (2006) Guide to the frogs of Reserva Adolpho Ducke, central Amazonia. Attema Design Editorial, ManausGoogle Scholar
  19. Lomolino MV, Riddle BR, Whittaker RJ (2017) Biogeography: biological diversity across space and time, 5th edn. Sinauer Associates Inc, SunderlandGoogle Scholar
  20. Mittermeier RA, Robles-Gil P, Hoffmann M et al (2004) Hotspots revisited: Earths biologically richest and most endangered ecoregions. CEMEX, Mexico CityGoogle Scholar
  21. Morrone JJ (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:1–110.  https://doi.org/10.11646/zootaxa.3782.1.1CrossRefPubMedGoogle Scholar
  22. Morrone JJ (2015) Biogeographical regionalisation of the Andean region. Zootaxa 3936:207–236.  https://doi.org/10.11646/zootaxa.3936.2.3CrossRefPubMedGoogle Scholar
  23. Morrone JJ (2017) Neotropical biogeography: regionalization and evolution. CRC Press, Taylor & Francis Group, Boca RatonCrossRefGoogle Scholar
  24. Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938CrossRefGoogle Scholar
  25. Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27:261–273CrossRefGoogle Scholar
  26. Proches S (2005) The world’s biogeographical regions: cluster analysis based on bat distributions. J Biogeogr 32:607–614.  https://doi.org/10.1111/j.1365-2699.2004.01186.xCrossRefGoogle Scholar
  27. Rangel TF, Edwards NR, Holden PB et al (2018) Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361:eaar5452.  https://doi.org/10.1126/science.aar5452CrossRefPubMedGoogle Scholar
  28. Rueda M, Rodríguez MÁ, Hawkins BA (2010) Towards a biogeographic regionalization of the European biota. J Biogeogr 37:2067–2076CrossRefGoogle Scholar
  29. Rueda M, Rodríguez MÁ, Hawkins BA (2013) Identifying global zoogeographical regions: lessons from Wallace. J Biogeogr 40:2215–2225CrossRefGoogle Scholar
  30. Ruggiero A, Hawkins BA (2008) Why do mountains support so many species of birds? Ecography 31:306–315.  https://doi.org/10.1111/j.2008.0906-7590.05333.xCrossRefGoogle Scholar
  31. Santos TG, Vasconcelos TS, Rossa-Feres DC et al (2009) Anurans of a seasonally dry tropical forest: Morro do Diabo State Park, São Paulo state, Brazil. J Nat Hist 43:973–993CrossRefGoogle Scholar
  32. Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365CrossRefGoogle Scholar
  33. Valdujo PH, Silvano DL, Colli G et al (2012) Anuran species composition and distribution patterns in the Brazilian Cerrado, a neotropical hotspot. S Am J Herpetol 7:63–78.  https://doi.org/10.2994/057.007.0209CrossRefGoogle Scholar
  34. Vasconcelos TS, Santos TG, Haddad CFB et al (2010) Climatic variables and altitude as predictors of anuran species richness and number of reproductive modes in Brazil. J Trop Ecol 26:423–432.  https://doi.org/10.1017/S0266467410000167CrossRefGoogle Scholar
  35. Vasconcelos TS, Rodríguez MÁ, Hawkins BA (2011) Biogeographic distribution patterns of South American amphibians: a regionalization based on cluster analysis. Natureza & Conservação 9:67–72CrossRefGoogle Scholar
  36. Vasconcelos TS, Prado VHM, da Silva FR et al (2014) Biogeographic distribution patterns and their correlates in the diverse frog fauna of the Atlantic Forest hotspot. PLoS One 9(8):e104130.  https://doi.org/10.1371/journal.pone.0104130CrossRefPubMedPubMedCentralGoogle Scholar
  37. Vilhena DA, Antonelli A (2015) A network approach for identifying and delimiting biogeographical regions. Nat Commun 6:6848.  https://doi.org/10.1038/ncomms7848CrossRefPubMedPubMedCentralGoogle Scholar
  38. Villalobos F, Dobrovolski R, Provete DB et al (2013) Is rich and rare the common share? Describing biodiversity patterns to inform conservation practices for South American anurans. PLoS One 8:e56073.  https://doi.org/10.1371/journal.-pone.0056073CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wells KD (2007) The ecology and behavior of amphibians. The University of Chicago Press, ChicagoCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tiago S. Vasconcelos
    • 1
  • Fernando R. da Silva
    • 2
  • Tiago G. dos Santos
    • 3
  • Vitor H. M. Prado
    • 4
  • Diogo B. Provete
    • 5
  1. 1.Department of Biological SciencesSão Paulo State University (UNESP)BauruBrazil
  2. 2.Federal University of São Carlos (UFScar)SorocabaBrazil
  3. 3.Federal University of Pampa (UNIPAMPA)São GabrielBrazil
  4. 4.Goiás State University (UEG)AnápolisBrazil
  5. 5.Federal University of Mato Grosso do Sul (UFMS)Campo GrandeBrazil

Personalised recommendations