Advertisement

Measures of Sarcopenia: The Utility of Ultrasound, Bioelectrical Impedance Analysis and Single-Slice Cross-Sectional Imaging

  • Marina MourtzakisEmail author
  • Kirsten Elizabeth Bell
Chapter

Abstract

Weight and body mass index (BMI) are simple, commonly used tools to assess nutritional status, but since they do not provide information on body composition, they are significantly limited in their ability to identify patients as sarcopenic or non-sarcopenic. More sophisticated techniques, such as clinical image analysis (by computed tomography [CT] or magnetic resonance imaging), provide more detailed information about the quantity, quality and distribution of tissues such as skeletal muscle and adipose tissue. Here, we discuss the importance of accurately quantifying skeletal muscle mass in patients with liver cirrhosis and then outline a four-step systematic process for choosing the most appropriate body composition assessment tool in a clinical setting. We conclude by describing three important clinically friendly tools for body composition assessment in liver cirrhosis: bioelectrical impedance analysis (BIA), CT imaging and ultrasonography.

Keywords

Body composition Skeletal muscle Computed tomography Bioelectrical impedance analysis Ultrasonography 

References

  1. 1.
    Tandon P, Ney M, Irwin I, Ma MM, Gramlich L, Bain VG, Esfandiari N, Baracos V, Montano-Loza AJ, Myers RP. Severe muscle depletion in patients on the liver transplant wait list—its prevalence and independent prognostic value. Liver Transpl. 2012;18:1209–16.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Paris M, Mourtzakis M. Assessment of skeletal muscle mass in critically patients: considerations for the utility of computed tomography imaging and ultrasonography. Curr Opin Clin Nutr Metab Care. 2016;19:125–30.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kang SH, Jeong WK, Baik SK, Cha SH, Kim MY. Impact of sarcopenia on prognostic value of cirrhosis: going beyond the hepatic venous pressure gradient and MELD score. J Cachexia Sarcopenia Muscle. 2018;9(5):860–70.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kalafateli M, Karatzas A, Tsiaoussis G, Koutroumpakis E, Tselekouni P, Koukias N, Konstantakis C, Assimakopoulos S, Gogos C, Thomopoulos K, Kalogeropoulou C, Triantos C. Muscle fat infiltration assessed by total psoas density on computed tomography predicts mortality in cirrhosis. Ann Gastroenterol. 2018;31(4):491–8.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, Ebadi M, Ghosh S, Rose C, Montano-Loza AJ. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int. 2018;12:377–86.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ju S, Choi SM, Park YS, Lee CH, Lee SM, Yoo CG, Kim YW, Han SK, Lee J. Rapid muscle loss negatively impacts survival in critically ill patients with cirrhosis. J Intensive Care Med. In Press:088506661877570.  https://doi.org/10.1177/0885066618775706.
  7. 7.
    Van Vugt JLA, Alferink LJM, Buettner S, Gaspersz MP, Bot D, Darwish Murad S, Feshtali S, van Ooijen PMA, Polak WG, Porte RJ, van Hoek B, van den Berg AP, Metselaar HJ, IJzermans JNM. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: a competing risk analysis in a national cohort. J Hepatol. In Press;  https://doi.org/10.1016/j.hep.2017.11.030.
  8. 8.
    Mourtzakis M, Parry S, Connolly B, Puthucheary Z. Skeletal muscle ultrasound in critical care: a tool in need of translation. Ann Am Thorac Soc. 2017;14(10):1495–503.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tandon P, Raman M, Mourtzakis M, Merli M. A practical approach to nutritional screening and assessment in cirrhosis. Hepatology. 2017;65(3):1044–57.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M. Sarcopenia: European consensus on definition and diagnosis. Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Tandon P, Low G, Mourtzakis M, Zenith L, Myers RP, Abraldes JG, Shaheen AA, Qamar H, Mansoor N, Carbonneau M, Ismond K, Mann S, Alaboudy A, Ma M. A model to identify sarcopenia in patients with cirrhosis. Clin Gastroenterol Hepatol. 2016;14(10):1473–80.CrossRefGoogle Scholar
  12. 12.
    Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, Baracos VE. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mourtzakis M, Prado CMM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33:997–1006.CrossRefGoogle Scholar
  14. 14.
    Baracos VE, Reiman T, Mourtzakis M, Gioulbasanis I, Antoun S. Body composition in patients with non-small cell lung cancer: a contemporary view of cancer cachexia with the use of computed tomography image analysis. Am J Clin Nutr. 2010;91(4):1133S–7S.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Martin L, Birdsell L, MacDonald N, Reiman T, Clandinin MT, McCargar LJ, Murphy R, Ghosh S, Sawyer MB, Baracos VE. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47.CrossRefGoogle Scholar
  16. 16.
    Di Sebastiano KM, Yang L, Zbuk K, Wong RK, Chow T, Koff D, Moran GR, Mourtzakis M. Accelerated muscle and adipose tissue loss may predict survival in pancreatic cancer patients: the relationship with diabetes and anaemia. Br J Nutr. 2013;109:302–12.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fujiwara N, Nakagawa H, Kudo Y, Tateishi R, Taguri M, Watadani T, Nakagomi R, Kondo M, Nakatsuka T, Minami T, Sato M, Uchino K, Enooku K, Kondo Y, Asaoka Y, Tanaka Y, Ohtomo K, Shiina S, Koike K. Sarcopenia, intramuscular fat deposition and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol. 2015;63:131–40.CrossRefGoogle Scholar
  18. 18.
    Benjamin J, Shasthry V, Kaal CR, Anand L, Bhardwaj A, Pandit V, Arora A, Rajesh S, Pamecha V, Jain V, Kumar G, Loria A, Puri P, Joshi YK, Sarin SK. Characterization of body composition and definition of sarcopenia in patients with alcoholic cirrhosis: a computed tomography based study. Liver Int. 2017;37:1668–74.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Montano-Loza AJ. Muscle wasting: a nutritional criterion to prioritize patients for liver transplantation. Curr Opin Clin Nutr Metab Care. 2014;17:219–25.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–63.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hanai T, Shiraki M, Nishimura K, Ohnishi S, Imai K, Suetsugu A, Takai K, Shimizu M, Moriwaki H. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition. 2015;31:193–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Montano-Loza AJ, Meza-Junco J, Prado CM, Lieffers JR, Baracos VE, Bain VG, Sawyer MB. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10:173.Google Scholar
  23. 23.
    Hamaguchi Y, Kaido T, Okumura S, Fujimoto Y, Ogawa K, Mori A, Hammad A, Tamai Y, Inagaki N, Uemoto S. Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. Liver Transpl. 2014;20(11):1413–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    World Health Organization (WHO). Technical report series 894: Obesity: Preventing and managing the global epidemic. Geneva: World Health Organization; 2000.Google Scholar
  25. 25.
    Moisey LL, Mourtzakis M, Cotton BA, Premji T, Heyland DK, Wade CE, Bulger E, Kozar RA. Nutrition and Rehabilitation Investigators Consortium (NUTRIC). Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care. 2013;17:R206.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Earthman CP. Body composition tools for assessment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications. J Parenter Enter Nutr. 2015;39(7):787–822.CrossRefGoogle Scholar
  27. 27.
    Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–600.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Parry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R, Annoni R, Puthucheary Z, Gordon IR, Morris PE, Denehy L. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care. 2015;30(5):1151.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Teigen LM, Kuchnia AJ, Mourtzakis M, Earthman CP. The use of technology for estimating body composition. Strengths and weaknesses of common modalities in a clinical setting. Nutr Clin Pract. 2017;32(1):20–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kyle UG, Genton L, Slosman DO, Pichard C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition. 2001;17(7–8):534–41.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Barbosa-Silva MCG, Barros AJD. Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care. 2005;8(3):311–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk SL, Grutsch JF, Lis CG. Bioelectrical impedance phase angle in clinical practice: implications for prognosis in stage IIB and IV non-small cell lung cancer. BMC Cancer. 2009;9:37.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schwenk A, Eschner W, Kremer G, Ward LC. Assessment of intracellular water by whole body bioelectrical impedance and total body potassium in HIV-positive patients. Clin Nutr. 2000;19(2):109–13.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ott M, Fischer H, Polat H, Helm EB, Frenz M, Caspary WF, Lembcke B. Bioelectrical impedance analysis as a predictor of survival in pateints with human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;9(1):20–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wirth R, Volkert D, Rösler A, Sieber CC, Bauer JM. Bioelectric impedance phase angle is associated with hospital mortality of geriatric patients. Arch Gerontol Geriatr. 2010;51:290–4.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bosy-Westphal A, Danielzik S, Dorhofer R-P, Later W, Wiese S, Muller M. Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. J Parenter Enter Nutr. 2006;30(4):309–16.CrossRefGoogle Scholar
  37. 37.
    Barbosa-Silva MCG, Barros AJD, Wang J, Heymsfield SB, Pierson RN. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr. 2005;82(1):49–52.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dittmar M. Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J Phys Anthropol. 2003;122(4):361–70.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Moisey L. A comprehensive assessment of nutritional status and factors impacting nutrition recovery in hospitalized, critically ill patients following liberation from mechanical ventilation. UW Space. http://hdl.handle.net/10012/11937.
  40. 40.
    Jensen M, Hermann A, Hessov I, Mosekilde L. Componenets of variance when assessing the reproducibility of body composition measurements using bio-impedance and the Hologic QDR-2000 DXA scanner. Clin Nutr. 1997;16(2):61–5.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, Heitmann BL, Kent-Smith L, Melchoir JC, Pirlich M, Scharfetter H, Schols AM, Pichard C, Composition of the ESPEN Working Group. Bioelectrical impedance analysis-part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43.CrossRefGoogle Scholar
  42. 42.
    Kushner RF, de Vries PM, Gudivaka R. Use of bioelectrical impedance analysis measurements in the clinical management of patients undergoing dialysis. Am J Clin Nutr. 1996;64(3 Suppl):503S–9S.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Earthman CP, Matthie JR, Reid PM, Harper IT, Ravussin E, Howell WH. A comparison of bioimpedance methods for detection of body cell mass change in HIV infection. J Appl Physiol. 2000;88(3):944–56.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Moon JR, Stout JR, Smith AE, et al. Reproducibility and validity of bioimpedance spectroscopy for tracking changes in total body water: implications for repeated measurements. Br J Nutr. 2010;104(9):1384–94.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ellis KJ. Human body composition: in vivo methods. Physiol Rev. 2000;80(2):649–80.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Simons JP, Schols AM, Westerterp KR, ten Veide GP, Wouters EF. The use of bioelectrical impedance analysis to predict total body water in patients with cancer cachexia. Am J Clin Nutr. 1995;61(4):741–5.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nickerson BS. Agreement between single-frequency bioimpedance analysis and dual-energy x-ray absorptiometry varies based on sex and segmental mass. Nutr Res. 2018;54:33–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, Heymsfield SB, Heshka S. Visceral adipose tissue: relations between single-slice areas and total volume. Am J Clin Nutr. 2004;80(2):271, 278.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, Heymsfield SB, Heshka S. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97(6):2333–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Weijs PJM, Looijaard WGPM, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM, Beishuizen A. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18:R12.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998;85(1):115–22.CrossRefGoogle Scholar
  52. 52.
    Caan BJ, Meyerhardt JA, Kroenke CH, Alexeeff S, Xiao J, Weltzien E, Feliciano EC, Castillo AL, Quesenberry CP, Kwan ML, Prado CM. Explaining the obesity paradox: the association between body composition and colorectal cancer survival (C-SCANS Study). Cancer Epidemiol Biomark Prev. 2017;26(7):1008–15.CrossRefGoogle Scholar
  53. 53.
    Caan BJ, Cespedes Feliciano EM, Prado CM, Alexeeff S, Kroenke CH, Bradshaw P, Quesenberry CP, Weltzien EK, Castillo AL, Olobatuyi TA, Chen WY. Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol. 2018;4(6):798–804.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ross R, Janssen I. Computed tomography and magnetic resonance imaging. In: Heymsfield SB, Lohman T, Wang Z, Going S, editors. Human body composition. 2nd ed. Champaign: Human Kinetics; 2005. p. 89–108.Google Scholar
  55. 55.
    Goodpaster GH, Thaete FL, Kelley DE. Composition of skeletal muscle evaluated with computed tomography. Ann N Y Acad Sci. 2000;904:18–24.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Prado CMM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. J Parenter Enter Nutr. 2014;38(8):940–53.CrossRefGoogle Scholar
  57. 57.
    Murphy R, Bureyko TF, Milijkovic I, Cauley JA, Satterfield S, Hue TF, Klepin HD, Cummings SR, Newman AB, Harris TB. Association of total adiposity and computed tomographic measures of regional adiposity with incident cancer risk: a prospective population-based study of older adults. Appl Physiol Nutr Metab. 2014;39:687–92.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bae KT. Intravenous contrast medium administration and scan timing at CT: consideration and approaches. Radiology. 2010;256(1):32–61.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Van Vugt JLA, Coebergh van den Braak RRJ, Schippers HJW, Veen KM, Levolger S, De Bruin RWF, Koek M, Niessen WJ, IJzermans JNM, Willemsen FEJA. Contrast-enhancement influences skeletal muscle density, but not skeletal muscle mass, measurements on computed tomography. Clin Nutr. 2018;37(5):1707–14.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rollins KE, Javanmard-Emamghissi H, Awwad A, Macdonald IA, Fearon KCH, Lobo DN. Body composition measurement using computed tomography: does the phase of the scan matter? Nutrition. 2017;41:37–44.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Avrutin E, Moisey LL, Zhang R, Khattab J, Todd E, Premji T, Kozar R, Heyland DK, Mourtzakis M. Clinically practical approach for screening of low muscularity using electronic linear measures on computed tomography images in critically ill patients. J Parenter Enter Nutr. 2018;42(5):885–91.CrossRefGoogle Scholar
  62. 62.
    Cespedes Feliciano EM, Avrutin E, Caan BJ, Boroian A, Mourtzakis M. Screening for low muscularity in colorectal cancer patients: a valid, clinic-friendly approach that predicts mortality. J Cachexia Sarcopenia Muscle. 2018;9(5):898–908.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wells CI, McCall JL, Plank LD. Relationship between total body protein and cross-sectional skeletal muscle area in liver cirrhosis is influenced by overhydration. Liver Transplant. 2019;25:45.  https://doi.org/10.1002/lt.25314.CrossRefGoogle Scholar
  64. 64.
    Halpenny DF, Goncalves M, Schwitzer E, Golia Pernicka J, Jackson J, Gandelman S, Moskowitz CS, Postow M, Mourtzakis M, Caan B, Jones LW, Plodkowski AJ. Computed tomography-derived assessments of regional muscle volume: validating their use as predictors of whole body muscle volume in cancer patients. Br J Radiol. 2018;91:20180451.  https://doi.org/10.1259/bjr.20180451.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gruther W, Benesch T, Zorn C, Paternostro-Sluga T, Quittan M, Fialka-Moser V, Spiss C, Kainberger F, Crevenna R. Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med. 2008;40:185–9.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cartwright MS, Kwayisi G, Griffin LP, Sarwal A, Walker FO, Harris JM, Berry MJ, Chahal PS, Morris PE. Quantitative neuromuscular ultrasound in the intensive care unit. Muscle Nerve. 2013;47:255–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mourtzakis M, Wischmeyer P. Bedside ultrasound measurement of skeletal muscle. Curr Opin Clin Nutr Metab Care. 2014;17:389–95.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Moreau NG, Simpson KN, Teefey SA, Damiano DL. Muscle architecture predicts maximum strength and is related to activity levels in cerebral palsy. Phys Ther. 2010;90(11):1619–30.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Harris-Love MO, Monfaredi R, Ismail C, Blackman MR, Cleary K. Quantitative ultrasound: measurement considerations for the assessment of muscular dystrophy and sarcopenia. Front Aging Neurosci. 2014;6:172.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rech A, Radaelli R, Goltz FR, da Rosa LH, Schneider CD, Pinto RS. Echointensity is negatively associated with functional capacity in older women. Age. 2014;36:9708–16.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Wilhelm EN, Rech A, Minozzo F, Radaelli R, Botton CE, Pinto RS. Relationship between quadriceps femoris echo intensity, muscle power, and functional capacity of older men. Age. 2014;36:1113–22.CrossRefGoogle Scholar
  72. 72.
    Puthucheary Z, Phadke A, Rawal R, McPhail MJ, Sidhu PS, Rowlerson A, Moxham J, Harridge S, Hart N, Montgomery HE. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43:1603–11.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zaidman CM, Holland MR, Hughes MS. Quantitative ultrasound of skeletal muscle: reliable measurements of calibrated muscle backscatter from different ultrasound systems. Ultrasound Med Biol. 2013;38:1618–25.CrossRefGoogle Scholar
  74. 74.
    Paris MT, Lafleur B, Dubin JA, Mourtzakis M. Development of a bedside viable ultrasound protocol to quantify appendicular lean tissue mass. J Cachexia Sarcopenia Muscle. 2017;8(5):713–26.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sanada K, Kearns CF, Midorikawa T, Abe T. Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur J Appl Physiol. 2006;96:24–31.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Takai Y, Ohta M, Akagi R, Kato E, Wakahara T, Kawakami Y, Fukunaga T, Kanehisa H. Applicability of ultrasound muscle thickness measurements for predicting fat-free mass in elderly population. J Nutr Health Aging. 2014;18:579–85.CrossRefGoogle Scholar
  77. 77.
    Ema R, Wakahara T, Mogi Y, Miyamoto N, Komatsu T, Kanehisa H, Kawakami Y. In vivo measurement of human rectus femoris architecture by ultrasonography: validity and applicability. Clin Physiol Funct Imaging. 2013;33:267–73.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Thomaes T, Thomis M, Onkelinx S, Coudyzer W, Cornelissen V, Vanhees L. Reliability and validity of the ultrasound technique to measure the rectus femoris muscle diameter in older CAD-patients. BMC Med Imaging. 2012;12:7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Seymour JM, Ward K, Sidhu PS, Puthucheary Z, Steier J, Jolley CJ, Rafferty G, Polkey MI, Moxham J. Ultrasound measurement of the rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax. 2009;64:418–23.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D, Karvellas CJ, Preiser JC, Bird N, Kozar R, Heyland DK. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr. 2014;38(7):886–90.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Baldwin CE, Paratz JD, Bersten A. Diaphragm and peripheral muscle thickness on ultrasound: intra-rater reliability and variability of a methodology using nonstandard recumbent position. Respirology. 2011;16:1136–43.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of KinesiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations