Advertisement

Nonlinear Acoustic Analysis of Voice Production

  • Hayley H. Raj
  • Austin J. Scholp
  • Jack J. JiangEmail author
Chapter

Abstract

Voice production involves motion of the vocal folds, which act as a pair of coupled oscillators. Specifically, the vocal folds and glottal airstream form a mechanical system, where energy from the airstream can be imparted to the vocal fold tissue; with enough energy, the vocal folds will begin to self-oscillate and columns of air will pass through the glottis, creating phonation. The signal produced by this airflow is then filtered by the vocal tract and heard as voice. Supraglottic structures such as the supraglottic larynx, lips, tongue, palate, pharynx, and nasal cavity then act as resonators to produce the sound that is heard as voice. Small changes in supraglottic structures can affect voice quality. The voice signal produced through vocal fold oscillation is modulated by other sources of internal motion such as respiration, heartbeat, action potentials, and air turbulence, as well as sub- and supraglottal anatomical structures. Evaluating the quality of voice is an important aspect of vocal health assessment as it is a simple and noninvasive method for judging the outcomes of surgical procedures and following someone’s progress over the course of therapy. Two main options for analyzing a voice are through perceptual methods and computational signal processing.

Keywords

Nonlinear acoustic analysis of voice production Acoustic analysis of voice production Voice production Perceptual voice analysis Signal-to-noise and harmonic-to-noise ratios in voice Physiology of the voice 

References

  1. 1.
    Titze IR. Workshop on acoustic voice analysis: summary statement. Iowa City, Iowa: National Center for Voice and Speech; 1995.Google Scholar
  2. 2.
    Titze IR. The physics of small-amplitude oscillation of the vocal folds. J Acoust Soc Am. 1988;83(4):1536–52.CrossRefGoogle Scholar
  3. 3.
    Hanspeter H, Berry D, Titze IR, Steinecke I. Nonlinear dynamics of the voice: signal analysis and biomechanical modeling. Chaos Interdiscip J Nonlinear Sci. 1995;5(1):30–4.CrossRefGoogle Scholar
  4. 4.
    Sataloff RT, Heman-Ackah YD, Hawkshaw MJ. Clinical anatomy and physiology of the voice. Otolaryngol Clin N Am. 2007;40(5):909–29.CrossRefGoogle Scholar
  5. 5.
    Awan SN, Roy N, Jette ME, Meltzner GS, Hillman RE. Quantifying dysphonia severity using a spectral/cepstral-based acoustic index: comparisons with auditory-perceptual judgements from the CAPE-V. Clin Linguist Phon. 2010;24(9):742–58.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kreiman J, Gerratt BR. Validity of rating scale measures of voice quality. J Acoust Soc Am. 1998;104(3):1598–608.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Millet B, Dejonckere P. What determines the differences in perceptual rating of dysphonia between experienced raters? Folia Phoniatr Logop. 1998;50(6):305–10.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kempster GB, Gerratt BR, Verdolini-Abbott K, Barkmeier-Kramer J, Hillman RE. Consensus auditory-perceptual evaluation of voice: development of a standardized clinical protocol. Am J Speech Lang Pathol. 2009;18(2):124–32.CrossRefGoogle Scholar
  9. 9.
    Vijay P, Jamieson DG. Acoustic discrimination of pathological voice: sustained vowels versus continuous speech. J Speech Lang Hear Res. 2001;44(2):327–39.CrossRefGoogle Scholar
  10. 10.
    Kent RD, Kim Y. Acoustic analysis of speech. In: The handbook of clinical linguistics. Hoboken, New Jersey: Blackwell Publishing Ltd.; 2009. p. 360–80.Google Scholar
  11. 11.
    Hardesty L. Explained: linear and nonlinear systems. MIT News; 2010. [Online]. Available: http://news.mit.edu/2010/explained-linear-0226. Accessed 21 Aug 2018.
  12. 12.
    Jiang JJ, Zhang Y, McGilligan C. Chaos in voice, from modeling to measurement. J Voice. 2006;20(1):2–17.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Zhang Y, Jiang JJ, Biazzo L, Jorgensen M. Perturbation and nonlinear dynamic analyses of voices from patients with unilateral laryngeal paralysis. J Voice. 2005;19(4):519–28.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sprecher A, Olszewski A, Jiang JJ, Zhang Y. Updating signal typing in voice: addition of type 4 signals. J Acoust Soc Am. 2010;127(6):3710–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Amer SA, Elaassar AS, Anany AM, Quriba AS. Nasalance changes following various endonasal surgeries. Int Arch Otohinolaryngol. 2017;21(2):110–4.CrossRefGoogle Scholar
  16. 16.
    Hartl D, Hans S, Vaissiere J, Brasnu D. Objective acoustic and aerodynamic measures of breathiness. Eur Arch Otorhinolaryngol. 2002;260:175–82.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hirano M. Clinical examination of voice. Wien: Springer-Verlag; 1981.Google Scholar
  18. 18.
    Karnell MP, Melton SD, Childes JM, Coleman TC, Dailey SA, Hoffman HT. Reliability of clinician-based (GRBAS and CAPE-V) and patient-based (V-RQOL and IPVI) documentation of voice disorders. J Voice. 2007;21(5):576–90.CrossRefGoogle Scholar
  19. 19.
    Tavares EM, Tavares EM, Alvarado RC, Helen R, Martins G. Consequences of chronic nasal obstruction on the laryngeal mucosa and voice quality of 4- to 12-year-old children. J Voice. 2012;26(4):488–92.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Smith ME, Roy N, Houtz D. Laryngeal reinnervation for paralytic dysphonia in children younger than 10 years. JAMA Otolaryngol Head Neck Surg. 2012;138(12):1161–6.Google Scholar
  21. 21.
    Senkal OA, Ciyiltepe M. Effects of voice therapy in school-age children. J Voice. 2013;27(6):787.e19–25.CrossRefGoogle Scholar
  22. 22.
    Zur KB, Carroll LM. Recurrent laryngeal nerve reinnervation in children: acoustic and endoscopic characteristics pre-intervention and post-intervention. A comparison of treatment options. Laryngoscope. 2015;125(S11):S1–S15.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sidell DR, Zacharias S, Balakrishnan K, Rutter MJ, De Alarcon A. Surgical management of posterior glottic diastasis in children. Ann Otol Rhinol Laryngol. 2014;124(1):72–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hseu A, Ayele N, Kawai K, Woodnorth G, Nuss R. Voice abnormalities and laryngeal pathology in preterm children. Ann Otol Rhinol Laryngol. 2018;127(8):508–13.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kelchner LN, Brehm SB, Weinrich B, Middendorf J, deAlarcon A, Levin L, Elluru R. Perceptual evaluation of severe pediatric voice disorders: rater reliability using the consensus auditory perceptual evaluation of voice. J Voice. 2010;24(4):441–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Krival K, Kelchner LN, Weinrich B, Baker SE, Lee L, Middendorf JH, Zur KB. Vibratory source, vocal quality and fundamental frequency following pediatric laryngotracheal reconstruction. Int J Pediatr Otorhinolaryngol. 2007;71(8):1261–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Webb AL, Carding PN, Deary IJ, MacKenzie K, Steen N, Wilson JA. The reliability of three perceptual evaluation scales for dysphonia. Eur Arch Otorhinolaryngol Head Neck. 2004;261(8):429–34.Google Scholar
  28. 28.
    De Bodt MS, Wuyts FL, Van de Heynig PH, Croux C. Test-retest study of the GRBAS scale: influence of experience and professional background on perceptual rating of voice quality. J Voice. 1997;11(1):74–80.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Infusino SA, Diercks GR, Rogers DJ, Garcia J, Ojha S, Maurer R, Bunting G, Hartnick CJ. Establishment of a normative cepstral pediatric acoustic database. JAMA Otolaryngol Head Neck Surg. 2015;141(4):358–63.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jiang JJ, Zhang Y, Ford CN. Nonlinear dynamics of phonations in excised larynx experiments. J Acoust Soc Am. 2003;114(4 pt 1):2198–205.PubMedCrossRefGoogle Scholar
  31. 31.
    Ma EP, Yiu EM. Suitability of acoustic perturbation measures in analysing periodic and nearly periodic voice signals. Folia Phoniatr Logop. 2005;57(1):38–47.PubMedCrossRefGoogle Scholar
  32. 32.
    Choi SH, Zhang Y, Jiang JJ, Bless DM, Welham NV. Nonlinear dynamic-based analysis of severe dysphonia in patients with vocal fold scar and sulcus vocalis. J Voice. 2012;26(5):566–76.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ferrand CT. Harmonics-to-noise ratio: an index of vocal aging. J Voice. 2002;16(4):480–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Yumoto E, Gould WJ, Baer T. Harmonics-to-noise ratio as an index of the degree of hoarseness. J Acoust Soc Am. 1982;71(6):1544–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Mahmoudian S, Aminrasouli N, Ahmadi ZZ, Lenarz T, Farhadi M. Acoustic analysis of crying signal in infants with disabling hearing impairment. J Voice. 2018; In Press.Google Scholar
  36. 36.
    Tezcaner CZ, Ozgursoy SK, Sati I, Dursun G. Change in voice therapy in objective and subjective voice measurements of pediatric patients with vocal nodules. Eur Arch Otorhinolaryngol. 2009;266:1923–7.CrossRefGoogle Scholar
  37. 37.
    Hill C, Ojha S, Maturo S, Maurer R, Bunting G, Hartnick CJ. Consistency of voice frequency and perturbation measures in children. Otolaryngol Head Neck Surg. 2013;148(4):637–41.CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Jiang JJ. Acoustic analyses of sustained and running voices from patients with laryngeal pathologies. J Voice. 2008;22(1):1–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Brockmann M, Drinnan MJ, Storck C, Carding PN. Reliable jitter and shimmer measurements in voice clinics: the relevance of vowel, gender, vocal intensity, and fundamental frequency effects in a typical clinical task. J Voice. 2011;25(1):44–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Viera MN, McInnes FR, Jack MA. On the influence of laryngeal pathologies on acoustic and electroglottographic jitter measures. J Acoust Soc Am. 2002;111(2):1045–55.CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Jiang JJ, Wallace SM, Zhou L. Comparison of nonlinear dynamic methods and perturbation methods for voice analysis. J Acoust Soc Am. 2005;118(4):2551–60.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    MacCallum JK, Cai L, Zhang Y, Jiang JJ. Acoustic analysis of aperiodic voice: perturbation and nonlinear dynamic properties in esophageal phonation. J Voice. 2009;23(3):283–90.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Zhang Y, McGilligan C, Zhou L, Vig M, Jiang JJ. Nonlinear dynamic analysis of voices before and after surgical excision of vocal polyps. J Acoust Soc Am. 2004;115(5):2270–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Giovanni A, Ouaknine M, Triglia JM. Determination of largest Lyapunov exponents of vocal signal: application to unilateral laryngeal paralysis. J Voice. 1999;13(3):341–54.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wolf A, Swift JB, Swinney HL, Vastano JA. Determining lyapunov exponents from a time series. Physica 16D. 1985;16(3):285–317.Google Scholar
  46. 46.
    Meredith ML, Theis SM, McMurray JS, Zhang Y, Jiang JJ. Describing pediatric dysphonia with nonlinear dynamic parameters. Int J Pediatr Otorhinolaryngol. 2008;72(12):1829–36.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Nicollas R, Garrel R, Ouaknine M, Giovanni A, Nazarian B, Triglia J. Normal voice in children between 6 and 12 years of age: database and nonlinear analysis. J Voice. 2008;22(6):671–5.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mishima K, Nakano H, Matsumura T, Moritani N, Iida A, Ueyama Y. Nonlinear dynamic analysis of vowels in cleft palate children with or without hypernasality. Int J Pediatr Otorhinolaryngol. 2012;2012:739523.Google Scholar
  49. 49.
    Kent RD. Vocal tract acoustics. J Voice. 1993;7(2):97–117.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kent RD, Weismer G, Kent JF, Vorperian HK, Duffy JR. Acoustic studies of dysarthric speech: methods, progress, and potential. J Commun Disord. 1999;32(3):141–86.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Allison KM, Annear L, Policicchio M, Hustand KC. Range and precision of formant movement in pediatric dysarthria. J Speech Lang Hear Res. 2017;60(7):1864–76.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Viegas F, Viegas D, Baeck HE. Frequency measurement of vowel formants produced by Brazilian children aged between 4 and 8 years. J Voice. 2015;29(3):292–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Awan S, Roy N, Jiang JJ. Nonlinear dynamic analysis of disordered voice: the relationship between the correlation dimension (D2) and pre-/post-treatment change in perceived dysphonia severity. J Voice. 2010;24(3):285–93.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lin L, Calawerts W, Dodd K, Jiang JJ. An objective parameter for quantifying the turbulent noise portion of voice signals. J Voice. 2016;30(6):664–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Liu B, Polce E, Jiang J. An objective parameter to classify voice signals based on variation in energy distribution. J Voice. 2018; In Press.Google Scholar
  56. 56.
    Calawerts WM, Lin L, Sprott JC, Jiang JJ. Using rate of divergence as an objective measure to differentiate between voice signal types based on the amount of disorder in the signal. J Voice. 2017;31(1):16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Chou A, Schrof C, Polce E, Braden M, McMurray J, Jiang J. Comparing the nonlinear dynamic acoustic parameters of healthy adult and pediatric voices. Ann Otol Rhinol Laryngol. 2018;127(12):937–45.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hayley H. Raj
    • 1
  • Austin J. Scholp
    • 2
  • Jack J. Jiang
    • 1
    Email author
  1. 1.Department of Surgery, Division of Otolaryngology-Head and Neck SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  2. 2.Departments of Surgery and Biomedical Engineering, Division of Otolaryngology-Head and Neck SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations