Endoscopic Evaluation of the Pediatric Larynx

  • Rita R. Patel
  • Stephen D. Romeo
  • Jessica Van Beek-King
  • Maia N. BradenEmail author


Visualization of the larynx is necessary to evaluate structure and function, identify pathology, and plan treatment. There are different methods of evaluating the larynx, and each has benefits and limitations. Flexible endoscopy under halogen light can be performed in the clinic on nearly all children and provides an excellent view of general structure and mobility at the cricoarytenoid joints. Rigid or flexible stroboscopy provides more in-depth evaluation of the vibratory properties of the vocal folds, closure pattern, and any vocal fold lesions. High-speed laryngeal visualization has the advantage of being able to capture vibratory properties of aperiodic or chaotic vibration.


Endoscopic evaluation of the pediatric larynx Larynx visualization in children Flexible laryngoscopy in children Videostroboscopy for laryngeal imaging Endoscopy on the larynx Stroboscopy for laryngeal imaging 


  1. 1.
    Plaat BE, van der Laan BF, Wedman J, Halmos GB, Dikkers FG. Distal chip versus fiberoptic laryngoscopy using endoscopic sheaths: diagnostic accuracy and image quality. Eur Arch Otorhinolaryngol. 2014;271(8):2227–32.PubMedGoogle Scholar
  2. 2.
    Eller R, Ginsburg M, Lurie D, Heman-Ackah Y, Lyons K, Sataloff R. Flexible laryngoscopy: a comparison of fiber optic and distal chip technologies-part 2: laryngopharyngeal reflux. J Voice. 2009;23(3):389–95.CrossRefGoogle Scholar
  3. 3.
    Sahin MI, Kokoglu K, Gulec S, Ketenci I, Unlu Y. Premedication methods in nasal endoscopy: a prospective, randomized, double-blind study. Clin Exp Otorhinolaryngol. 2017;10(2):158–63.CrossRefGoogle Scholar
  4. 4.
    Nielson DW, Ku PL, Egger M. Topical lidocaine exaggerates laryngomalacia during flexible bronchoscopy. Am J Respir Crit Care Med. 2000;161(1):147–51.CrossRefGoogle Scholar
  5. 5.
    Guiu Hernandez E, Gozdzikowska K, Apperley O, Huckabee ML. Effect of topical nasal anesthetic on swallowing in healthy adults: a double-blind, high-resolution manometry study. Laryngoscope. 2018;128(6):1335–9.CrossRefGoogle Scholar
  6. 6.
    Lester S, Langmore SE, Lintzenich CR, Wright SC, Grace-Martin K, Fife T, et al. The effects of topical anesthetic on swallowing during nasoendoscopy. Laryngoscope. 2013;123(7):1704–8.CrossRefGoogle Scholar
  7. 7.
    O’Dea MB, Langmore SE, Krisciunas GP, Walsh M, Zanchetti LL, Scheel R, et al. Effect of lidocaine on swallowing during FEES in patients with dysphagia. Ann Otol Rhinol Laryngol. 2015;124(7):537–44.CrossRefGoogle Scholar
  8. 8.
    Lee GS, Yang CC, Wang CP, Kuo TB. Effect of nasal decongestion on voice spectrum of a nasal consonant-vowel. J Voice. 2005;19(1):71–7.CrossRefGoogle Scholar
  9. 9.
    Milczuk HA. Effects of oropharyngeal surgery on velopharyngeal competence. Curr Opin Otolaryngol Head Neck Surg. 2012;20(6):522–6.CrossRefGoogle Scholar
  10. 10.
    Golinko MS, Mason K, Nett K, Riski JE, Williams JK. Sphincterplasty for velopharyngeal insufficiency in the child without a cleft-palate: etiologies and speech outcomes. J Craniofac Surg. 2015;26(7):2067–71.CrossRefGoogle Scholar
  11. 11.
    Gomaa MA, Mohammed HM, Abdalla AA, Nasr DM. Effect of adenoid hypertrophy on the voice and laryngeal mucosa in children. Int J Pediatr Otorhinolaryngol. 2013;77(12):1936–9.CrossRefGoogle Scholar
  12. 12.
    Carr MM, Nguyen A, Poje C, Pizzuto M, Nagy M, Brodsky L. Correlation of findings on direct laryngoscopy and bronchoscopy with presence of extraesophageal reflux disease. Laryngoscope. 2000;110(9):1560–2.CrossRefGoogle Scholar
  13. 13.
    Abdel-Aziz M, Ibrahim N, Ahmed A, El-Hamamsy M, Abdel-Khalik MI, El-Hoshy H. Lingual tonsils hypertrophy; a cause of obstructive sleep apnea in children after adenotonsillectomy: operative problems and management. Int J Pediatr Otorhinolaryngol. 2011;75(9):1127–31.CrossRefGoogle Scholar
  14. 14.
    Sedaghat AR, Flax-Goldenberg RB, Gayler BW, Capone GT, Ishman SL. A case-control comparison of lingual tonsillar size in children with and without down syndrome. Laryngoscope. 2012;122(5):1165–9.CrossRefGoogle Scholar
  15. 15.
    Jones JW, Tracy M, Perryman M, Arganbright JM. Airway anomalies in patients with 22q11.2 deletion syndrome: a 5-year review. Ann Otol Rhinol Laryngol. 2018;127(6):384–9.CrossRefGoogle Scholar
  16. 16.
    Bless DM, Hirano M, Feder RJ. Videostroboscopic evaluation of the larynx. Ear Nose Throat J. 1987;66(7):289–96.PubMedGoogle Scholar
  17. 17.
    Patel RR, Awan SN, Barkmeier-Kraemer J, Courey M, Deliyski D, Eadie T, et al. Recommended protocols for instrumental assessment of voice: American speech-language-hearing association expert panel to develop a protocol for instrumental assessment of vocal function. Am J Speech Lang Pathol. 2018:1–19.Google Scholar
  18. 18.
    Hillman RE, Mehta DD. The science of stroboscopic imaging. In: KA K, RJ L, editors. Laryngeal evaluation: indirect laryngoscopy to high-speed digital imaging. New York: Thieme Medical Publishers; 2010. p. 101–9.Google Scholar
  19. 19.
    Mehta DD, Deliyski DD, Hillman RE. Commentary on why laryngeal stroboscopy really works: clarifying misconceptions surrounding Talbot's law and the persistence of vision. J Speech Lang Hear Res. 2010;53(5):1263–7.CrossRefGoogle Scholar
  20. 20.
    Hertegard S. What have we learned about laryngeal physiology from high-speed digital videoendoscopy? Curr Opin Otolaryngol Head Neck Surg. 2005;13(3):152–6.CrossRefGoogle Scholar
  21. 21.
    Poburka BJ, Patel RR, Bless DM. Voice-vibratory assessment with laryngeal imaging (VALI) form: reliability of rating Stroboscopy and high-speed Videoendoscopy. J Voice. 2017;31(4):513.e1–e14.CrossRefGoogle Scholar
  22. 22.
    Hirano M, Bless D. Videostroboscopic examination of the larynx. San Diego: Singular Publishing Group; 1993.Google Scholar
  23. 23.
    Hartnick CJ, Zeitels SM. Pediatric video laryngo-stroboscopy. Int J Pediatr Otorhinolaryngol. 2005;69(2):215–9.CrossRefGoogle Scholar
  24. 24.
    Zacharias SR, Brehm SB, Weinrich B, Kelchner L, Tabangin M, de Alarcon A. Feasibility of clinical endoscopy and Stroboscopy in children with bilateral vocal fold lesions. Am J Speech Lang Pathol. 2016;25(4):598–604.CrossRefGoogle Scholar
  25. 25.
    Shinghal T, Low A, Russell L, Propst EJ, Eskander A, Campisi P. High-speed video or video stroboscopy in adolescents: which sheds more light? Otolaryngol Head Neck Surg. 2014;151(6):1041–5.CrossRefGoogle Scholar
  26. 26.
    Bonilha HS, Focht KL, Martin-Harris B. Rater methodology for stroboscopy: a systematic review. J Voice. 2015;29(1):101–8.CrossRefGoogle Scholar
  27. 27.
    Nawka T, Konerding U. The interrater reliability of stroboscopy evaluations. J Voice. 2012;26(6):812.e1–10.CrossRefGoogle Scholar
  28. 28.
    Rosen CA. Stroboscopy as a research instrument: development of a perceptual evaluation tool. Laryngoscope. 2005;115(3):423–8.CrossRefGoogle Scholar
  29. 29.
    Poburka BJ. A new stroboscopy rating form. J Voice. 1999;13(3):403–13.CrossRefGoogle Scholar
  30. 30.
    Patel RR, Awan SN, Barkmeier-Kraemer J, Courey M, Deliyski D, Eadie T, et al. Recommended protocols for instrumental assessment of voice: American speech-language-hearing association expert panel to develop a protocol for instrumental assessment of vocal function. Am J Speech Lang Pathol. 2018;(25):1–19.Google Scholar
  31. 31.
    Patel, Dailey S, Bless D. Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders. Ann Otol Rhinol Laryngol. 2008;117(6):413–24.CrossRefGoogle Scholar
  32. 32.
    Fransworth DW. High-speed motion pictures of human vocal folds. Bell Teleph Rec. 1940;18:203–8.Google Scholar
  33. 33.
    Timcke R, Von Leden H, Moore P. Laryngeal vibrations: measurements of the glottic wave. I. The normal vibratory cycle. AMA Arch Otolaryngol. 1958;68(1):1–19.CrossRefGoogle Scholar
  34. 34.
    Timcke R, Von Leden H, Moore P. Laryngeal vibrations: measurements of the glottic wave. II. Physiologic variations. AMA Arch Otolaryngol. 1959;69(4):438–44.CrossRefGoogle Scholar
  35. 35.
    Patel, Donohue KD, Johnson WC, Archer SM. Laser projection imaging for measurement of pediatric voice. Laryngoscope. 2011;121(11):2411–7.CrossRefGoogle Scholar
  36. 36.
    Patel, Dubrovskiy D, Dollinger M. Characterizing vibratory kinematics in children and adults with high-speed digital imaging. J Speech Lang Hear Res. 2014;57:S674–S86.CrossRefGoogle Scholar
  37. 37.
    Patel, Donohue KD, Unnikrishnan H, Kryscio RJ. Kinematic measurements of the vocal-fold displacement waveform in typical children and adult populations: quantification of high-speed endoscopic videos. J Speech Lang Hear Res. 2015;58(2):227–40.CrossRefGoogle Scholar
  38. 38.
    Patel. Vibratory onset and offset times in children: a laryngeal imaging study. Int J Pediatr Otorhi. 2016;87:11–7.CrossRefGoogle Scholar
  39. 39.
    Patel RR, Unnikrishnan H, Donohue KD. Effects of vocal fold nodules on glottal cycle measurements derived from high-speed videoendoscopy in children. PLoS One. 2016;11(4):e0154586.CrossRefGoogle Scholar
  40. 40.
    Patel, Dixon A, Richmond A, Donohue KD. Pediatric high-speed digital imaging of vocal fold vibration: a normative pilot study of glottal closure and phase closure characteristics. Int J Pediatr Otorhinolaryngol. 2012;76:954–9.CrossRefGoogle Scholar
  41. 41.
    Semmler M, Kniesburges S, Birk V, Ziethe A, Patel R, Dollinger M. 3D reconstruction of human laryngeal dynamics based on endoscopic high-speed recordings. IEEE Trans Med Imaging. 2016;35(7):1615–24.CrossRefGoogle Scholar
  42. 42.
    Semmler M, Dollinger M, Patel RR, Ziethe A, Schutzenberger A. Clinical relevance of endoscopic three-dimensional imaging for quantitative assessment of phonation. Laryngoscope. 2018;128(10):2367–74.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rita R. Patel
    • 1
  • Stephen D. Romeo
    • 2
  • Jessica Van Beek-King
    • 3
  • Maia N. Braden
    • 2
    • 4
    Email author
  1. 1.Department of Speech and Hearing SciencesIndiana UniversityBloomingtonUSA
  2. 2.Department of Surgery, Division of Otolaryngology-Head and Neck SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  3. 3.Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Section of Pediatric OtolaryngologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  4. 4.UW Voice and Swallow ClinicsUW Health, American Family Children’s HospitalMadisonUSA

Personalised recommendations