Advertisement

Nanostructured Materials Life Time and Toxicity Analysis

  • T. Daniel ThangaduraiEmail author
  • N. Manjubaashini
  • Sabu Thomas
  • Hanna J. Maria
Chapter
  • 87 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Now-a-days, the nanostructured materials increased its fabrication skill and application in important sectors like energy, environment, and medicine. However, there are some concerns related to its toxicity and life time. This chapter presents some interesting techniques and analysis to measure life time and toxicity of nanoscale materials.

References

  1. 1.
    Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605CrossRefGoogle Scholar
  2. 2.
    Kroll A, Pillukat MH, Hahn D et al (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377CrossRefGoogle Scholar
  3. 3.
    Wang H, Wu F, Meng W et al (2013) Engineered nanoparticles may induce genotoxicity. Environ Sci Technol 47:13212–13214CrossRefGoogle Scholar
  4. 4.
    Winnik FM, Maysinger D (2013) Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res 46:672–680CrossRefGoogle Scholar
  5. 5.
    Chen T, Yan J, Li Y (2014) Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal 22:95–104CrossRefGoogle Scholar
  6. 6.
    Gnach A, Lipinski T, Bednarkiewicz A (2015) Upconverting nanoparticles: assessing the toxicity. Chem Soc Rev 44:1561–1584CrossRefGoogle Scholar
  7. 7.
    Robichaud CO, Uyar AE, Darby MR (2009) Estimates of upper bounds and trends in Nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233CrossRefGoogle Scholar
  8. 8.
    Becker L, Poreda RJ, Nuth JA (2006) Fullerenes in meteorites and the nature of planetary atmospheres. Natural fullerenes and related structures of elemental carbon. Springer, Netherlands, pp 95–121CrossRefGoogle Scholar
  9. 9.
    Hochella MF, Lower SK, Maurice PA et al (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635CrossRefGoogle Scholar
  10. 10.
    Plata DL, Gschwend PM, Reddy CM (2008) Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment. Nanotechnol 19:185706–185719CrossRefGoogle Scholar
  11. 11.
    Donaldson K, Stone V, Tran CL (2004) Nanotoxicology. Occup Environ Med 61:727–728CrossRefGoogle Scholar
  12. 12.
    Myllynen PK, Loughran MJ, Howard CV et al (2008) Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol 26:130–137CrossRefGoogle Scholar
  13. 13.
    Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicol 269:89–91CrossRefGoogle Scholar
  14. 14.
    Doak SH, Griffiths SM, Manshian B et al (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293CrossRefGoogle Scholar
  15. 15.
    Bergamaschi E, Bussolati O, Magrini A et al (2006) Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment. Int J Immunopathol Pharmacol 19:3–10Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • T. Daniel Thangadurai
    • 1
    Email author
  • N. Manjubaashini
    • 2
  • Sabu Thomas
    • 3
  • Hanna J. Maria
    • 4
  1. 1.Department of Nanoscience and TechnologySri Ramakrishna Engineering CollegeCoimbatoreIndia
  2. 2.Department of Nanoscience and TechnologySri Ramakrishna Engineering CollegeCoimbatoreIndia
  3. 3.IIUCNNMahatma Gandhi UniversityKottayamIndia
  4. 4.IIUCNNMahatma Gandhi UniversityKottayamIndia

Personalised recommendations