Advertisement

The Fog-Computing Based Reliability Enhancement in the Robot Swarm

  • Iakov Korovin
  • Eduard Melnik
  • Anna KlimenkoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11659)

Abstract

The current paper deals with the swarm robots reliability. Cloud robotics, fog robotics and the Internet of the Robotic Things are the fast growing scientific fields nowadays, yet the terms “cloud” and “fog” relate to the network facilities and devices rather than the swarm. In this paper the new approach is proposed, to place a fog-like structure into the swarm and so to affect the reliability of those robots, which need the reliability correction. To show the potential of the approach proposed, simple models are developed, as well as some simulations have been made. Based on the simulation results, “greedy” and “egoistic” strategies are proposed to affect the robots reliability.

Keywords

Robot swarm Fog robotics Fog-computing Reliability Cloud robotics Optimization 

Notes

Acknowledgements

The current study is granted by the RFBR projects 19-07-00907 and 17-08-01605.

References

  1. 1.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)CrossRefGoogle Scholar
  2. 2.
    Gouveia, B.D., Portugal, D., Silva, D.C., Marques, L.: Computation sharing in distributed robotic systems: a case study on SLAM. IEEE Trans. Autom. Sci. Eng. 12(2), 410–422 (2015)CrossRefGoogle Scholar
  3. 3.
    León, A., et al.: SLAM and map merging. J. Phys. Agents 3(1), 13–23 (2009)Google Scholar
  4. 4.
    Konolige, K., et al.: Map merging for distributed robot navigation. In: Intelligent Robots and Systems Proceedings, vol. 1, pp. 212–217. IEEE, Las Vegas (2004)Google Scholar
  5. 5.
    Carpin, S.: Fast and accurate map merging for multi-robot systems. Auton. Robots 25(3), 305–316 (2008)CrossRefGoogle Scholar
  6. 6.
    Marjovi, A., Choobdar, S., Marques, L.: Robotic clusters: multi-robot systems as computer clusters a topological map merging demonstration. Rob. Auton. Syst. 60(9), 1191–1204 (2012)CrossRefGoogle Scholar
  7. 7.
    Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12(2), 1–12 (2015)CrossRefGoogle Scholar
  8. 8.
    Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture, challenges and applications. IEEE Network 26(3), 21–28 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, X.V., Wang, L., Mohammed, A., Givehchi, M.: Ubiquitous manufacturing system based on cloud: a robotics application. Robot. Comput. Integr. Manuf. 45, 116–125 (2017)CrossRefGoogle Scholar
  10. 10.
    Dey, S., Mukherjee, A.: Robotic SLAM: a review from fog computing and mobile edge computing perspective. In: Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking Services, pp. 153–158 (2016)Google Scholar
  11. 11.
    Ray, P.P.: Internet of robotic things: concept, technologies, and challenges. IEEE Access 4, 9489–9500 (2016)CrossRefGoogle Scholar
  12. 12.
    Inaltekin, H., Gorlatova, M., Mung, C.: Virtualized control over fog: interplay between reliability and latency, CoRR. https://arxiv.org/pdf/1712.00100.pdf. Accessed 5 Apr 2019
  13. 13.
    Jawhar, I., Mohamed, N., Wu, J., Al-Jaroodi, J.: Networking of multi-robot systems: architectures and requirements. Sens. Actuator Netw. Feature Papers 7(52), 1–16 (2018)Google Scholar
  14. 14.
    Parker, L.E.: Multiple mobile robot systems. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 921–941. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-30301-5_41CrossRefGoogle Scholar
  15. 15.
    Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 3, pp. 3016–3023. IEEE, Washington, DC (2002)Google Scholar
  16. 16.
    Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30552-1_2CrossRefGoogle Scholar
  17. 17.
    Simoens, P., Dragone, M., Saffiotti, A.: The internet of robotic things: a review of concept, added value and applications. Int. J. Adv. Rob. Syst. 15(1), 1–11 (2018)Google Scholar
  18. 18.
    Kuffner, J.J.: Cloud-enabled robots. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, pp. 176–181 (2010)Google Scholar
  19. 19.
    Waibel, M., et al.: Robo earth – a World Wide Web for robots. Robot. Autom. Mag. 18(2), 69–82 (2011)CrossRefGoogle Scholar
  20. 20.
    Krishna, S.L., et al.: Fog robotics for efficient, fluent and robust human-robot interaction. In: 17th IEEE International Symposium on Network Computing and Applications (NCA 2018). https://arxiv.org/abs/1811.05578. Accessed 5 Apr 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Autonomous Federal State Institution of Higher Education «Southern Federal University»Rostov-on-DonRussia
  2. 2.Southern Scientific Center of Russian Academy of SciencesRostov-on-DonRussia
  3. 3.Scientific Research Institute of Multiprocessor Computer Systems of Southern Federal UniversityTaganrogRussia

Personalised recommendations