Advertisement

Close-Loop Control of Microrobot Within a Constrained Environment Using Electromagnet Pairs

  • Nail Akçura
  • Aytaç Kahveci
  • Levent ÇetinEmail author
  • Abdulkareem Alasli
  • Fatih Cemal Can
  • Erkin Gezgin
  • Özgür Tamer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11659)

Abstract

This paper describes a macro/micro robot manipulation system consisting of an electromagnet couple and an industrial manipulator. The system has capability of motion 6 Degrees of Freedom (6 DOF) providing the same amount of DOFs to the manipulation of the microrobot. A custom-design mechanism which is attached onto the tip of the industrial manipulator provides the required magnetic field profiles for force and torque generation using coil couple and their ability sliding motion in linear directions. This combination provides reprogrammable working space for the microrobot manipulation. Robot Operating System (ROS) based programming integrates all the subsystem software. Visual feedback assures the real-time microrobot position and orientation data. Close-loop motion control of the microrobot was tested using custom designed constrained paths take part in a plane. Experiment were presented for specific motions of the microrobot to show the microrobot motion abilities. The results are promising which may orient to the applications like micro assembly and micromanipulation.

Keywords

Microrobot Electromagnet Actuation 

Notes

Acknowledgements

This work is financially supported by the Scientific and Technology Research Council (TUBITAK, Grant no. 215M879) and Izmir Katip Çelebi University Izmir Katip Çelebi University Scientific Research Projects Coordinatorship Department (grant no 2018-ÖDL-MÜMF-0020).

References

  1. 1.
    Zhang, L., Peyer, K.E., Nelson, B.J.: Artificial bacterial flagella for micromanipulation. Lab Chip 10(17), 2203–2215 (2010)CrossRefGoogle Scholar
  2. 2.
    Mahoney, A.W., Sarrazin, J.C., Bamberg, E., Abbott, J.J.: Velocity control with gravity compensation for magnetic helical microswimmers. Adv. Robot. 25(8), 1007–1028 (2011)CrossRefGoogle Scholar
  3. 3.
    Sendoh, M., Yamazaki, A., Chiba, A., Soma, M., Ishiyama, K., Arai, K.I.I.: Spiral type magnetic micro actuators for medical applications. In: Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society 2004, vol. 1, pp. 1–6 (2004)Google Scholar
  4. 4.
    Xu, T., Hwang, G., Andreff, N., Regnier, S.: Characterization of three-dimensional steering for helical swimmers. In: Proceedings of the IEEE International Conference on Robotics Automation, pp. 4686–4691 (2014)Google Scholar
  5. 5.
    Ko, Y., et al.: A jellyfish-like swimming mini-robot actuated by an electromagnetic actuation system. Smart Mater. Struct. 21(5), 57001 (2012)CrossRefGoogle Scholar
  6. 6.
    Gao, W., Sattayasamitsathit, S., Manesh, K.M., Weihs, D., Wang, J.: Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132(41), 14403–14405 (2010)CrossRefGoogle Scholar
  7. 7.
    Go, G., et al.: Electromagnetic navigation system using simple coil structure (4 coils) for 3-D locomotive microrobot. IEEE Trans. Magn. 51(4), 1–7 (2015)Google Scholar
  8. 8.
    Kummer, M.P., Abbott, J.J., Kratochvil, B.E., Borer, R., Sengul, A., Nelson, B.J.: Octomag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26(6), 1006–1017 (2010)CrossRefGoogle Scholar
  9. 9.
    Schuerle, S., Erni, S., Flink, M., Kratochvil, B.E., Nelson, B.J.: Three-dimensional magnetic manipulation of micro- and nanostructures for applications in life sciences. IEEE Trans. Magn. 49(1), 321–330 (2013)CrossRefGoogle Scholar
  10. 10.
    Pawashe, C., Floyd, S., Sitti, M.: Modeling and experimental characterization of an untethered magnetic micro-robot. Int. J. Rob. Res. 28(8), 1077–1094 (2009)CrossRefGoogle Scholar
  11. 11.
    Diller, E., Giltinan, J., Sitti, M.: Independent control of multiple magnetic microrobots in three dimensions. Int. J. Rob. Res. 32(5), 614–631 (2013)CrossRefGoogle Scholar
  12. 12.
    Mahoney, A.W., Abbott, J.J.: Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. Int. J. Rob. Res. 35(1–3), 129–147 (2016)CrossRefGoogle Scholar
  13. 13.
    Mahoney, A.W., Abbott, J.J.: Control of untethered magnetically actuated tools with localization uncertainty using a rotating permanent magnet. In: Proceedings of the IEEE RAS EMBS International Conference Biomedical Robotics and Biomechatronics, pp. 1632–1637 (2012)Google Scholar
  14. 14.
    Wright, S.E., Mahoney, A.W., Popek, K.M., Abbott, J.J.: The spherical-actuator-magnet manipulator: a permanent-magnet robotic end-effector. IEEE Trans. Robot. 33(5), 1013–1024 (2017)CrossRefGoogle Scholar
  15. 15.
    Duan, X., Xiao, G., Wang, X.: Apparatus and method for controlling movement of a capsule endoscope in digestive tract of a human body. US patents, US20150018615A1 (2015)Google Scholar
  16. 16.
    Ciuti, G., et al.: Robotic versus manual control in magnetic steering of an endoscopic capsule. Endoscopy 42(2), 148–152 (2010)CrossRefGoogle Scholar
  17. 17.
    Amokrane, W., Belharet, K., Souissi, M., Grayeli, A.B., Ferreira, A.: Macro–micromanipulation platform for inner ear drug delivery. Rob. Auton. Syst. 107, 10–19 (2018)CrossRefGoogle Scholar
  18. 18.
    Alasli, A., Çetin, L., Akçura, N., Kahveci, A., Can, F.C., Tamer, Ö.: Electromagnet design for untethered actuation system mounted on robotic manipulator. Sens. Actuators, A Phys. 285, 550–565 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dokuz Eylül UniversityİzmirTurkey
  2. 2.İzmir Katip Çelebi UniversityİzmirTurkey
  3. 3.Nagoya UniversityNagoyaJapan

Personalised recommendations