Mathematical Finance pp 461-535 | Cite as

# Optimal Investment

Chapter

First Online:

## Abstract

As an investor in a securities market you have to decide how to arrange your portfolio. In this chapter we consider the natural situation that you want to maximise your profits. It is not entirely obvious how to formalise this goal because the payoff of investments is typically random.

## References

- 6.I. Bajeux-Besnainou, R. Portait, Dynamic asset allocation in a mean-variance framework. Manag. Sci.
**44**(11), S79–S95 (1998)zbMATHCrossRefGoogle Scholar - 13.S. Basak, G. Chabakauri, Dynamic mean-variance asset allocation. Rev. Financ. Stud.
**23**(8), 2970–3016 (2010)CrossRefGoogle Scholar - 21.F. Bellini, M. Frittelli, On the existence of minimax martingale measures. Math. Finance
**12**(1), 1–21 (2002)MathSciNetzbMATHCrossRefGoogle Scholar - 22.G. Benedetti, L. Campi, J. Kallsen, J. Muhle-Karbe, On the existence of shadow prices. Finance Stochast.
**17**(4), 801–818 (2013)MathSciNetzbMATHCrossRefGoogle Scholar - 24.S. Biagini, M. Frittelli, A unified framework for utility maximization problems: an Orlicz space approach. Ann. Appl. Probab.
**18**(3), 929–966 (2008)MathSciNetzbMATHCrossRefGoogle Scholar - 27.J.-M. Bismut, Growth and optimal intertemporal allocation of risks. J. Econom. Theory
**10**(2), 239–257 (1975)MathSciNetzbMATHCrossRefGoogle Scholar - 29.T. Björk,
*Arbitrage Theory in Continuous Time*, 3rd edn. (Oxford Univ. Press, Oxford, 2009)zbMATHGoogle Scholar - 35.T. Björk, A. Murgoci, X. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion. Math. Finance
**24**(1), 1–24 (2014)MathSciNetzbMATHCrossRefGoogle Scholar - 55.A. Černý, J. Kallsen, On the structure of general mean-variance hedging strategies. Ann. Probab.
**35**(4), 1479–1531 (2007)MathSciNetzbMATHCrossRefGoogle Scholar - 65.J. Cvitanić, I. Karatzas, Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Finance
**6**(2), 133–165 (1996)MathSciNetzbMATHCrossRefGoogle Scholar - 66.C. Czichowsky, Time-consistent mean-variance portfolio selection in discrete and continuous time. Finance Stochast.
**17**(2), 227–271 (2013)MathSciNetzbMATHCrossRefGoogle Scholar - 67.C. Czichowsky, W. Schachermayer, Duality theory for portfolio optimisation under transaction costs. Ann. Appl. Probab.
**26**(3), 1888–1941 (2016)MathSciNetzbMATHCrossRefGoogle Scholar - 68.C. Czichowsky, J. Muhle-Karbe, W. Schachermayer, Transaction costs, shadow prices, and duality in discrete time. SIAM J. Financial Math.
**5**(1), 258–277 (2014)MathSciNetzbMATHCrossRefGoogle Scholar - 98.R. Elliott,
*Stochastic Calculus and Applications*(Springer, New York, 1982)zbMATHGoogle Scholar - 125.T. Goll, J. Kallsen, Optimal portfolios for logarithmic utility. Stoch. Process. Appl.
**89**(1), 31–48 (2000)MathSciNetzbMATHCrossRefGoogle Scholar - 126.T. Goll, J. Kallsen, A complete explicit solution to the log-optimal portfolio problem. Ann. Appl. Probab.
**13**(2), 774–799 (2003)MathSciNetzbMATHCrossRefGoogle Scholar - 127.T. Goll, L. Rüschendorf, Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stochast.
**5**(4), 557–581 (2001)MathSciNetzbMATHCrossRefGoogle Scholar - 136.H. He, N. Pearson, Consumption and portfolio policies with incomplete markets and short-sale constraints: the finite-dimensional case. Math. Finance
**1**(3), 1–10 (1991)MathSciNetzbMATHCrossRefGoogle Scholar - 137.H. He, N. Pearson, Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case. J. Econom. Theory
**54**(2), 259–304 (1991)MathSciNetzbMATHCrossRefGoogle Scholar - 146.Y. Hu, P. Imkeller, M. Müller, Utility maximization in incomplete markets. Ann. Appl. Probab.
**15**(3), 1691–1712 (2005)MathSciNetzbMATHCrossRefGoogle Scholar - 148.F. Hubalek, J. Kallsen, L. Krawczyk, Variance-optimal hedging for processes with stationary independent increments. Ann. Appl. Probab.
**16**(2), 853–885 (2006)MathSciNetzbMATHCrossRefGoogle Scholar - 153.J. Jacod, P. Protter,
*Probability Essentials*, 2nd edn. (Springer, Berlin, 2004)zbMATHCrossRefGoogle Scholar - 154.J. Jacod, A. Shiryaev,
*Limit Theorems for Stochastic Processes*, 2nd edn. (Springer, Berlin, 2003)zbMATHCrossRefGoogle Scholar - 161.E. Jouini, H. Kallal, Martingales and arbitrage in securities markets with transaction costs. J. Econom. Theory
**66**(1), 178–197 (1995)MathSciNetzbMATHCrossRefGoogle Scholar - 162.D. Kahneman,
*Thinking, Fast and Slow*(Farrar, Straus and Giroux, New York, 2011)Google Scholar - 163.J. Kallsen,
*Semimartingale Modelling in Finance*. PhD thesis, University of Freiburg, 1998Google Scholar - 164.J. Kallsen, A utility maximization approach to hedging in incomplete markets. Math. Methods Oper. Res.
**50**(2), 321–338 (1999)MathSciNetzbMATHCrossRefGoogle Scholar - 165.J. Kallsen, Optimal portfolios for exponential Lévy processes. Math. Methods Oper. Res.
**51**(3), 357–374 (2000)MathSciNetCrossRefGoogle Scholar - 167.J. Kallsen, Utility-based derivative pricing in incomplete markets, in
*Mathematical Finance—Bachelier Congress 2000*, ed. by H. Geman, D. Madan, S. Pliska, T. Vorst (Springer, Berlin, 2002), pp. 313–338CrossRefGoogle Scholar - 173.J. Kallsen, J. Muhle-Karbe, On using shadow prices in portfolio optimization with transaction costs. Ann. Appl. Probab.
**20**(4), 1341–1358 (2010)MathSciNetzbMATHCrossRefGoogle Scholar - 174.J. Kallsen, J. Muhle-Karbe. Utility maximization in models with conditionally independent increments. Ann. Appl. Probab.
**20**(6), 2162–2177 (2010)MathSciNetzbMATHCrossRefGoogle Scholar - 175.J. Kallsen, J. Muhle-Karbe, Existence of shadow prices in finite probability spaces. Math. Methods Oper. Res.
**73**(2), 251–262 (2011)MathSciNetzbMATHCrossRefGoogle Scholar - 176.J. Kallsen, J. Muhle-Karbe, Option pricing and hedging with small transaction costs. Math. Finance
**25**(4), 702–723 (2015)MathSciNetzbMATHCrossRefGoogle Scholar - 177.J. Kallsen, J. Muhle-Karbe, The general structure of optimal investment and consumption with small transaction costs. Math. Finance
**27**(3), 659–703 (2017)MathSciNetzbMATHCrossRefGoogle Scholar - 180.J. Kallsen, T. Rheinländer, Asymptotic utility-based pricing and hedging for exponential utility. Stat. Decis.
**28**(1), 17–36 (2011)MathSciNetzbMATHGoogle Scholar - 187.I. Karatzas, S. Shreve,
*Methods of Mathematical Finance*(Springer, Berlin, 1998)zbMATHCrossRefGoogle Scholar - 188.I. Karatzas, G. Žitković, Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab.
**31**(4), 1821–1858 (2003)MathSciNetzbMATHCrossRefGoogle Scholar - 189.I. Karatzas, J. Lehoczky, S. Shreve, G. Xu, Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim.
**29**(3), 702–730 (1991)MathSciNetzbMATHCrossRefGoogle Scholar - 197.D. Kramkov, W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab.
**9**(3), 904–950 (1999)MathSciNetzbMATHCrossRefGoogle Scholar - 205.J. Laurent, H. Pham, Dynamic programming and mean-variance hedging. Finance Stochast.
**3**(1), 83–110 (1999)MathSciNetzbMATHCrossRefGoogle Scholar - 208.M. Loewenstein, On optimal portfolio trading strategies for an investor facing transactions costs in a continuous trading market. J. Math. Econom.
**33**(2), 209–228 (2000)MathSciNetzbMATHCrossRefGoogle Scholar - 213.H. Markowitz, Portfolio selection. J. Finance
**7**(1), 77–91 (1952)Google Scholar - 214.R. Martin, Optimal trading under proportional transaction costs. Risk, 54–59 (2014)Google Scholar
- 215.R. Martin, T. Schöneborn, Mean reversion pays, but costs. arXiv preprint arXiv:1103.4934 (2011)Google Scholar
- 217.R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case. Rev. Econ. Stat.
**51**(3), 247–257 (1969)CrossRefGoogle Scholar - 218.R. Merton, Optimum consumption and portfolio rules in a continuous-time model. J. Econom. Theory
**3**(4), 373–413 (1971)MathSciNetzbMATHCrossRefGoogle Scholar - 222.J. Mossin, Optimal multiperiod portfolio policies. J. Bus.
**41**(2), 215–229 (1968)CrossRefGoogle Scholar - 225.M. Nutz, Power utility maximization in constrained exponential Lévy models. Math. Finance
**22**(4), 690–709 (2012)MathSciNetzbMATHCrossRefGoogle Scholar - 226.B. Øksendal,
*Stochastic Differential Equations*, 6th edn. (Springer, Berlin, 2003)zbMATHCrossRefGoogle Scholar - 227.B. Øksendal, A. Sulem,
*Applied Stochastic Control of Jump Diffusions*, 2nd edn. (Springer, Berlin, 2007)zbMATHCrossRefGoogle Scholar - 234.H. Pham,
*Continuous-Time Stochastic Control and Optimization with Financial Applications*(Springer, Berlin, 2009)zbMATHCrossRefGoogle Scholar - 235.H. Pham, T. Rheinländer, M. Schweizer, Mean-variance hedging for continuous processes: new proofs and examples. Finance Stochast.
**2**(2), 173–198 (1998)MathSciNetzbMATHCrossRefGoogle Scholar - 236.E. Platen, D. Heath ,
*A Benchmark Approach to Quantitative Finance*(Springer, Berlin, 2006)zbMATHCrossRefGoogle Scholar - 243.T. Rheinländer, G. Steiger, Utility indifference hedging with exponential additive processes. Asia-Pac. Financ. Mark.
**17**(2), 151–169 (2010)zbMATHCrossRefGoogle Scholar - 244.H. Richardson, A minimum variance result in continuous trading portfolio optimization. Manag. Sci.
**35**(9), 1045–1055 (1989)MathSciNetzbMATHCrossRefGoogle Scholar - 248.C. Rogers, The relaxed investor and parameter uncertainty. Finance Stochast.
**5**(2), 131–154 (2001)MathSciNetzbMATHCrossRefGoogle Scholar - 250.C. Rogers,
*Optimal Investment*(Springer, Heidelberg, 2013)zbMATHCrossRefGoogle Scholar - 253.R. Rouge, N. El Karoui, Pricing via utility maximization and entropy. Math. Finance
**10**(2), 259–276 (2000)MathSciNetzbMATHCrossRefGoogle Scholar - 258.P. Samuelson, Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat.
**51**, 239–246 (1969)CrossRefGoogle Scholar - 260.W. Schachermayer, M. Sîrbu, E. Taflin, In which financial markets do mutual fund theorems hold true? Finance Stochast.
**13**(1), 49–77 (2009)MathSciNetzbMATHCrossRefGoogle Scholar - 266.M. Schweizer, Risk-minimality and orthogonality of martingales. Stochastics Stochastics Rep.
**30**(2), 123–131 (1990)MathSciNetzbMATHCrossRefGoogle Scholar - 267.M. Schweizer, Option hedging for semimartingales. Stoch. Process. Appl.
**37**(2), 339–363 (1991)MathSciNetzbMATHCrossRefGoogle Scholar - 268.M. Schweizer, Approximating random variables by stochastic integrals. Ann. Probab.
**22**(3), 1536–1575 (1994)MathSciNetzbMATHCrossRefGoogle Scholar - 269.M. Schweizer, Approximation pricing and the variance-optimal martingale measure. Ann. Probab.
**24**(1), 206–236 (1996)MathSciNetzbMATHCrossRefGoogle Scholar - 273.R. Shiller, Online data—Robert Shiller. url: http://www.econ.yale.edu/\~shiller/data.htm. Accessed: 1 May 2018Google Scholar
- 287.N. Touzi,
*Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE*(Springer, New York, 2013)zbMATHCrossRefGoogle Scholar - 290.J. von Neumann, O. Morgenstern,
*Theory of Games and Economic Behavior*, 2nd edn. (Princeton Univ. Press, Princeton, 1947)zbMATHGoogle Scholar

## Copyright information

© Springer Nature Switzerland AG 2019