Advertisement

Water and Nutrient Budgets of Organic Layers and Mineral Topsoils Under Tropical Montane Forest in Ecuador in Response to 15 Years of Environmental Change

  • W. WilckeEmail author
  • A. Velescu
  • S. Leimer
  • C. Valarezo
Chapter
  • 135 Downloads
Part of the Ecological Studies book series (ECOLSTUD, volume 240)

Abstract

We quantified the changes in macronutrient storages of the soil in a remote Andean tropical montane rain forest on the rim of the Amazon basin from 1998 to 2013. In the studied 15 years, the N, P, and S fluxes in throughfall+stemflow increased significantly, while those of Ca decreased and of Mg and K remained unchanged. The main reasons for increasing nutrient inputs were Amazonian forest fires. Ca inputs decreased because of a particularly strong Sahara dust deposition event in 1999/2000. On average of the 15 budgeted years, P and K accumulated in the organic layer at a rate doubling their current storages in 197 and 27 years, respectively. The other macronutrients were on average leached from the organic layer, depleting it in 38 (Mg) to 281 years (N). Nutrient leaching was likely favored by enhanced mineralization driven by climate warming. In the upper 30 cm of the mineral soil, all macronutrients accumulated at rates doubling their storages in 57 (Ca) to 601 years (P). Our results demonstrate that the current environmental change increased the nutrient supply of the studied ecosystem. Increased nutrient supply might shift the ecosystem to a new state and change the chemistry of headwater streams.

Notes

Acknowledgments

We thank E. Beck, K. Müller-Hohenstein, M. Richter, and W. Zech for co-initiating the long-term study; K. Fleischbein, R. Goller, M. Meyer-Grünefeldt, M. Sequeira, H. Wullaert, S. Yasin, and numerous undergraduate students for data acquisition during parts of the observation period; the Ecuadorian Environmental Ministry for the research permits; Naturaleza y Cultura Internacional (NCI) in Loja for providing the study area and the research station; and the Deutsche Forschungsgemeinschaft (DFG) for funding (FOR 402 and 816).

References

  1. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M et al (1998) Nitrogen saturation in temperate forest ecosystems. BioSci 48:921–934.  https://doi.org/10.2307/1313296 CrossRefGoogle Scholar
  2. Alencar A, Nepstad D, Diaz MDV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions 10(6).  https://doi.org/10.1175/EI150.1 CrossRefGoogle Scholar
  3. Arima EY, Richards P, Walker RT (2017) Biofuel expansion and the spatial economy: Implications for the Amazon basin in the 21st century. In: Qin ZC, Mishra U, Hastings A (eds) Bioenergy and land use change: Impact on natural capital and ecosystem services. American Geophysical Union, Wiley, Hoboken, NJ, pp 53–62.  https://doi.org/10.1002/9781119297376.ch4 CrossRefGoogle Scholar
  4. Artaxo P, Martins JV, Yamasoe MA, Procopio AS, Pauliquevis TM, Andreae MO et al (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondonia, Amazonia. J Geophys Res Atmos 107(D20).  https://doi.org/10.1029/2001JD000666
  5. Barthlott W, Hostert A, Kier G, Küper W, Kreft H, Mutke J et al (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61:305–315.  https://doi.org/10.3112/erdkunde.2007.04.01 CrossRefGoogle Scholar
  6. Balslev H, Øllgaard B (2002) Mapa de vegetación del sur de Ecuador. In: Aguirre MZ, Madsen JE, Cotton E, Balslev H (eds) Botánica Austroecuatoriana. Estudios sobre los recursos vegetales en las provincias de El Oro, Loja y Zamora-Chinchipe. Ediciones Abya-Yala, Quito, pp 51–64Google Scholar
  7. Batjes NH (2002) Carbon and nitrogen stocks of the soils of Central and Eastern Europe. Soil Use Manage 18:324–329.  https://doi.org/10.1111/j.1475-2743.2002.tb00248.x CrossRefGoogle Scholar
  8. Batjes NH, Dijkshoorn JA (1999) Carbon and nitrogen stocks of the soils in the Amazon region. Geoderma 89:273–286.  https://doi.org/10.1016/S0016-7061(98)00086-X CrossRefGoogle Scholar
  9. Bormann FH, Likens GE (1967) Nutrient cycling. Science 155:424–429.  https://doi.org/10.1126/science.155.3761.424 CrossRefGoogle Scholar
  10. Boy J, Wilcke W (2008) Tropical Andean forest derives calcium and magnesium from Saharan dust. Glob Biogeochem Cycle 22:GB1027.  https://doi.org/10.1029/2007GB002960 CrossRefGoogle Scholar
  11. Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008a) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycle 22:GB4011.  https://doi.org/10.1029/2007GB003158 CrossRefGoogle Scholar
  12. Boy J, Valarezo C, Wilcke W (2008b) Water flow paths in soil control element exports in an Andean tropical montane forest. Eur J Soil Sci 59:1209–1227.  https://doi.org/10.1111/j.1365-2389.2008.01063.x CrossRefGoogle Scholar
  13. Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Soil Sci 59:39–46.  https://doi.org/10.1097/00010694-194501000-00006 CrossRefGoogle Scholar
  14. Bronaugh D, Werner A (2015) Zhang + Yue-Pilon trends package. R package version 0.10-1, http://www.r-project.org
  15. Bruijnzeel LA (1991) Nutrient input-output budgets of tropical forest ecosystems: A review. J Trop Ecol 7:1–24.  https://doi.org/10.1017/S0266467400005010 CrossRefGoogle Scholar
  16. Bruijnzeel LA, Hamilton LS (2000) Decision Time for Cloud Forests. IHP Humid Tropics Programme Series, 13. IHP-UNESCO, ParisGoogle Scholar
  17. Bruijnzeel LA, Proctor J (1995) Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? In: Juvik JO, Scatena FN (eds) Tropical montane cloud forests, Ecol. Stud. 110. Springer, New York, pp 38–78.  https://doi.org/10.1007/978-1-4612-2500-3_3 CrossRefGoogle Scholar
  18. Bruijnzeel LA, Veneklaas EJ (1998) Climatic conditions and tropical montane forest productivity: The fog has not lifted yet. Ecology 79:3–9.  https://doi.org/10.1890/0012-9658(1998)079[0003:CCATMF]2.0.CO;2 CrossRefGoogle Scholar
  19. Bruijnzeel LA, Mulligan M, Scatena FM (2011) Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrol Process 25:465–498.  https://doi.org/10.1002/hyp.7974 CrossRefGoogle Scholar
  20. Dietrich K, Spoeri E, Oelmann Y (2016) Nutrient addition modifies phosphatase activities along an altitudinal gradient in a tropical montane forest in southern Ecuador. Front Earth Sci 4:12.  https://doi.org/10.3389/feart.2016.00012 CrossRefGoogle Scholar
  21. Dietrich K, Spohn M, Villamagua M, Oelmann Y (2017) Nutrient addition affects net and gross mineralization of phosphorus in the organic layer of a tropical montane forest. Biogeochemistry 136:223–236.  https://doi.org/10.1007/s10533-017-0392-z CrossRefGoogle Scholar
  22. Fisher JB, Malhi Y, Cuba Torres I, Metcalfe DB, van de Weg MJ, Meir P et al (2013) Nutrient limitation in rainforests and cloud forests along a 3000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902.  https://doi.org/10.1007/s00442-012-2522-6 CrossRefGoogle Scholar
  23. Fleischbein K, Wilcke W, Goller R, Valarezo C, Zech W, Knoblich K (2005) Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrol Proc 19:1355–1371.  https://doi.org/10.1002/hyp.5562 CrossRefGoogle Scholar
  24. Fleischbein K, Wilcke W, Valarezo C, Zech W, Knoblich K (2006) Water budget of three small catchments under montane forest in Ecuador. Hydrol Proc 20:2491–2507.  https://doi.org/10.1002/hyp.6212 CrossRefGoogle Scholar
  25. Frei E (1958) Eine Studie über den Zusammenhang zwischen Bodentyp, Klima und Vegetation in Ecuador. Plant Soil 9:215–236.  https://doi.org/10.1007/BF01394152 CrossRefGoogle Scholar
  26. Goller R, Wilcke W, Fleischbein K, Valarezo C, Zech W (2006) Dissolved inorganic nitrogen, phosphorus, and sulfur in the nutrient cycle of a montane forest in Ecuador. Biogeochemistry 77:57–89.  https://doi.org/10.1007/s10533-005-1061-1 CrossRefGoogle Scholar
  27. Grubb PJ (1995) Mineral nutrition and soil fertility in tropical rain forests. In: Lugo AE, Lowe C (eds) Tropical forests: management and ecology, Ecol Stud 112. Springer, New York, pp 308–330.  https://doi.org/10.1007/978-1-4612-2498-3_12 CrossRefGoogle Scholar
  28. Helsel DR, Hirsch RM (2002) Chapter A3: Statistical methods in water resources, in Techniques of water-resources investigations. In: United States Geological Survey (ed.) Book 4, Reston, VA, USAGoogle Scholar
  29. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 237:173–195.  https://doi.org/10.1023/A:1013351617532 CrossRefGoogle Scholar
  30. Hirsch RM, Slack JR, Smith RA (1982) Techniques for trend analysis for monthly water quality data. Water Resour Res 18:107–121.  https://doi.org/10.1029/WR018i001p00107 CrossRefGoogle Scholar
  31. Hoffer A, Gelencser A, Blazso M, Guyon P, Artaxo P, Andreae MO (2006) Diel and seasonal variations in the chemical composition of biomass burning aerosol. Atmos Chem Phys 6:3505–3515.  https://doi.org/10.5194/acp-6-3505-2006 CrossRefGoogle Scholar
  32. Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Dissertationes Botanicae 391. J Cramer, Berlin, GermanyGoogle Scholar
  33. Homeier J, Hertel D, Camenzind T, Cumbicus NL, Maraun M, Martinson GO et al (2012) Tropical Andean forests are highly susceptible to nutrient inputs – rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS One 7:e47128.  https://doi.org/10.1371/journal.pone.0047128 CrossRefGoogle Scholar
  34. IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resource Reports No. 106. FAO, RomeGoogle Scholar
  35. Jemison JM, Fox RH (1992) Estimation of zero-tension pan lysimeter collection efficiency. Soil Sci. 154:85–94.  https://doi.org/10.1097/00010694-199208000-00001 CrossRefGoogle Scholar
  36. Jobbagy EG, Jackson RB (2001) The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53:51–77.  https://doi.org/10.1023/A:1010760720215 CrossRefGoogle Scholar
  37. Jobbagy EG, Jackson RB (2004) The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology 85:2380–2389.  https://doi.org/10.1890/03-0245 CrossRefGoogle Scholar
  38. Johnson W, Lindberg SE (1992) Appendix. In: Johnson W, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling – a synthesis of the integrated forest study, Ecol Stud 91. Springer, New York, pp 610–688CrossRefGoogle Scholar
  39. Likens GE (2013) Biogeochemistry of a forested ecosystem, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  40. Lilienfein J, Wilcke W (2003) Element storage in native, agri- and silvicultural ecosystems of the Brazilian savanna I. Biomass, carbon, nitrogen, phosphorus, and sulfur. Plant Soil 254:425–442.  https://doi.org/10.1023/A:1025579932395 CrossRefGoogle Scholar
  41. Mahowald NM, Artaxo P, Baker AR, Jickells TD, Okin GS, Randerson JT et al (2005) Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Glob Biogeochem Cycle 19:GB4030.  https://doi.org/10.1029/2005GB002541 CrossRefGoogle Scholar
  42. McLeod AI (2011) Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2, https://CRAN.R-project.org/package=Kendall
  43. Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  44. Pepper IL, Gerba P, Gentry TJ (2015) Environmental microbiology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  45. Peters T, Drobnik T, Meyer H, Rankl M, Richter M, Rollenbeck R et al (2013) Chapter 2: Environmental changes affecting the Andes of Ecuador. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador, Ecol Stud 221. Springer, Berlin, pp 19–29.  https://doi.org/10.1007/978-3-642-38137-9_2 CrossRefGoogle Scholar
  46. Proctor J (1987) Nutrient cycling in primary and old secondary rainforests. Appl Geogr 7:135–152.  https://doi.org/10.1016/0143-6228(87)90046-4 CrossRefGoogle Scholar
  47. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/
  48. Rehmus A, Bigalke M, Valarezo C, Castillo JM, Wilcke W (2014) Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: Response of biomass and plant morphology to elevated Al concentrations. Plant Soil 382:301–315.  https://doi.org/10.1007/s11104-014-2110-0 CrossRefGoogle Scholar
  49. Rehmus A, Bigalke M, Valarezo C, Castillo JM, Wilcke W (2015) Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: Response of nutrient status to elevated Al concentrations. Plant Soil 388:87–97.  https://doi.org/10.1007/s11104-014-2110-0 CrossRefGoogle Scholar
  50. Rehmus A, Bigalke M, Boy J, Valarezo C, Wilcke W (2017) Aluminum cycling in a tropical montane forest ecosystem in southern Ecuador. Geoderma 288:196–203.  https://doi.org/10.1016/j.geoderma.2016.11.002 CrossRefGoogle Scholar
  51. Rollenbeck R, Peters T, Emck P, Richter M (2015) ECSF_climate station data best estimate ver. 1. Available online from DFG-FOR816dw, http://www.tropicalmountainforest.org/data_pre.do?citid=1382
  52. Roman L, Scatena FN, Bruijnzeel LA (2010) Chapter 6: Global and local variations in tropical montane cloud forest soils. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests, International Hydrology Series. Cambridge University Press, Cambridge, UK, pp 77–89.  https://doi.org/10.1017/CBO9780511778384.008 CrossRefGoogle Scholar
  53. Sala OE, Stuart Chapin IIIF, Armesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Global biodiversity scenarios for the Year 2100. Science 287:1770–1774.  https://doi.org/10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  54. Schrumpf M, Guggenberger G, Schubert C, Valarezo C, Zech W (2001) Tropical montane rain forest soils: Development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes. Die Erde 132:43–59Google Scholar
  55. Schuur EAG, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–442.  https://doi.org/10.1007/s004420100671 CrossRefGoogle Scholar
  56. Schwarz MT, Oelmann Y, Wilcke W (2011) Stable N isotope composition of nitrate reflects N transformations during the passage of water through a montane rain forest in Ecuador. Biogeochemistry 102:195–208.  https://doi.org/10.1007/s10533-010-9434-5 CrossRefGoogle Scholar
  57. Soethe N, Lehmann J, Engels C (2006) The vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian montane forest. Plant Soil 286:287–299.  https://doi.org/10.1007/s11104-006-9044-0 CrossRefGoogle Scholar
  58. Steinhardt U (1979) Untersuchungen über den Wasser- und Nährstoffhaushalt eines andinen Wolkenwaldes in Venezuela. Göttinger Bodenkundliche Berichte 56: 1–146, University of Göttingen, Germany.Google Scholar
  59. Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigations of nutrient limitations of forest growth on wet tropical mountains. Ecology 79:10–22.  https://doi.org/10.1890/0012-9658(1998)079[0010:EIONLO]2.0.CO;2 CrossRefGoogle Scholar
  60. Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Nino frequency in a climate model forced by future greenhouse warming. Nature 398:694–697.  https://doi.org/10.1038/19505 CrossRefGoogle Scholar
  61. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108.  https://doi.org/10.1029/2008JD011021 CrossRefGoogle Scholar
  62. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441.  https://doi.org/10.5194/acp-6-3423-2006 CrossRefGoogle Scholar
  63. Velescu A, Valarezo C, Wilcke W (2016) Response of dissolved organic matter to moderate N, P, N+P and Ca amendments in a tropical montane forest of south Ecuador. Front Earth Sci 4:58.  https://doi.org/10.3389/feart.2016.00058 CrossRefGoogle Scholar
  64. Veneklaas EJ (1991) Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia. J Trop Ecol 7:319–336.  https://doi.org/10.1017/S0266467400005587 CrossRefGoogle Scholar
  65. Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res 15:303–377.  https://doi.org/10.1016/S0065-2504(08)60122-1 CrossRefGoogle Scholar
  66. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Change 59:75–99.  https://doi.org/10.1023/A:1024406427519 CrossRefGoogle Scholar
  67. Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550.  https://doi.org/10.1038/nature03950 CrossRefGoogle Scholar
  68. Wilcke W, Lilienfein J (2004) Element storage in native, agri- and silvicultural ecosystems of the Brazilian savanna II. Metals. Plant Soil 258:31–41.  https://doi.org/10.1023/B:PLSO.0000016503.59527.ea CrossRefGoogle Scholar
  69. Wilcke W, Yasin S, Valarezo C, Zech W (2001) Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry 55:45–72.  https://doi.org/10.1023/A:1010631407270 CrossRefGoogle Scholar
  70. Wilcke W, Yasin S, Abramowski U, Valarezo C, Zech W (2002) Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. Eur J Soil Sci 53:15–27.  https://doi.org/10.1046/j.1365-2389.2002.00411.x CrossRefGoogle Scholar
  71. Wilcke W, Boy J, Hamer U, Potthast K, Rollenbeck R, Valarezo C (2013a) Chapter 11. Current regulating and supporting services: nutrient cycles. In: Bendix J, Beck E, Bräuning A, Makeschin F, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador, Ecol Stud 221. Springer, Heidelberg, pp 141–151.  https://doi.org/10.1007/978-3-642-38137-9_11 CrossRefGoogle Scholar
  72. Wilcke W, Leimer S, Peters T, Emck P, Rollenbeck R, Trachte K et al (2013b) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Glob Biogeochem Cycle 27:1194–1204.  https://doi.org/10.1002/2012GB004471 CrossRefGoogle Scholar
  73. Wilcke W, Velescu A, Leimer S, Bigalke M, Boy J, Valarezo C (2017) Biological vs. geochemical control and environmental change drivers of the base metal budgets of a tropical montane forest in Ecuador during 15 years. Biogeochemistry 136:167–189.  https://doi.org/10.1007/s10533-017-0386-x CrossRefGoogle Scholar
  74. Wilcke W, Velescu A, Leimer S, Bigalke M, Boy J, Valarezo C (2019) Temporal trends of phosphorus cycling in a tropical montane forest in Ecuador during 14 years. J Geophys Res-Biogeosci 124:1370–1386.  https://doi.org/10.1029/2018JG004942 Google Scholar
  75. Williams MR, Fisher TR, Melack JM (1997) Chemical composition and deposition of rain in the central Amazon, Brazil. Atmos Environ 31:207–217.  https://doi.org/10.1016/1352-2310(96)00166-5 CrossRefGoogle Scholar
  76. Wullaert H, Homeier J, Valarezo C, Wilcke W (2010) Response of the N and P cycle of an old-growth montane forest in Ecuador to experimental low-level N and P amendments. For Ecol Manage 260:1434–1445.  https://doi.org/10.1016/j.foreco.2010.07.021 CrossRefGoogle Scholar
  77. Wullaert H, Bigalke M, Homeier J, Cumbicus NL, Valarezo C, Wilcke W (2013) Short-term response of the Ca cycle of a montane forest in Ecuador to low experimental CaCl2 additions. J Plant Nutr Soil Sci 176:892–903.  https://doi.org/10.1002/jpln.201300146 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Geography and GeoecologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.National University of LojaLojaEcuador

Personalised recommendations