Advertisement

Radiocesium Cycling in the Context of Forest-Water Interactions

  • Hiroaki KatoEmail author
Chapter
  • 165 Downloads
Part of the Ecological Studies book series (ECOLSTUD, volume 240)

Abstract

The purpose of this chapter is to (1) provide an overview of radiocesium dynamics in forests affected by past nuclear accidents; (2) introduce the latest monitoring results of radiocesium cycling during the early phase of the Fukushima accident; and (3) discuss the potential suitability of radiocesium as a tracer of water and element cycling in forest ecosystems. Canopy interception of atmospherically deposited radiocesium varied significantly among different tree species. The evergreen conifers tend to show high canopy interception rate, often exceeding 70% of atmospheric input. The high interception fraction of the deposited radiocesium by coniferous canopies indicated that the canopy will act as a secondary source of radioactive contamination of the forest floor. On the other hand, broadleaved deciduous tree species showed relatively low interception rates of less than 40% of atmospheric input. Recent studies following the Fukushima accident have provided initial insights of the behavior of atmospheric radiocesium in the forest environment and increased our process-based understanding of radiocesium cycling. Building upon the knowledge gleaned from earlier works, there are ample opportunities for new lines of research that further elucidate the role of forest-water interactions on the cycling of radiocesium.

References

  1. Ashraf MA, Akib S, Maah MJ, Yusoff I, Balkhair KS (2014) Cesium-137: radio-chemistry, fate, and transport, remediation, and future concerns. Crit Rev Environ Sci Technol 44:1740–1793.  https://doi.org/10.1080/10643389.2013.790753 CrossRefGoogle Scholar
  2. Bonnett PJP, Anderson MA (1993) Radiocaesium dynamics in a coniferous forest canopy: a mid-Wales case study. Sci Total Environ 136:259–277.  https://doi.org/10.1016/0048-9697(93)90314-V CrossRefGoogle Scholar
  3. Bunzl K, Schimmack W, Kreutzer K, Schierl R (1989) Interception and retention of Chernobyl-derived 134Cs, 137Cs and 106Ru in a spruce stand. Sci Total Environ 78:77–87.  https://doi.org/10.1016/0048-9697(89)90023-5 CrossRefGoogle Scholar
  4. Calmon P, Gonze MA, Mourlon C (2015) Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents. Sci Total Environ 529:30–39.  https://doi.org/10.1016/j.scitotenv.2015.04.084 CrossRefGoogle Scholar
  5. Cambray RS, Playford K, Carpenter RC (1989) Radioactive fallout in air and rain: results to the end of 1988. In: UK atomic energy authority Rep., AERE-R 13575. HMSO, LondonGoogle Scholar
  6. Carlyle-Moses DE, Iida S, Germer S, Llorens P, Michalzik B, Nanko K et al (2018) Expressing stemflow commensurate with its ecohydrological importance. Adv Water Resour 121:472–479.  https://doi.org/10.1016/j.advwatres.2018.08.015 CrossRefGoogle Scholar
  7. Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48:1129–1134.  https://doi.org/10.1080/18811248.2011.9711799 CrossRefGoogle Scholar
  8. Goor F, Thiry Y (2004) Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated scots pine (Pinus sylvestris L.) plantations. Sci Total Environ 325:163–180.  https://doi.org/10.1016/j.scitotenv.2003.10.037 CrossRefGoogle Scholar
  9. Guillitte O, Andolina J, Koziol M, Debauche A (1990) Plant-cover influence on the spatial distribution of radiocesium deposits in forest ecosystems. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier Applied Science, London, pp 441–449Google Scholar
  10. Hisadome K, Onda Y, Kawamori A, Kato H (2013) Migration of radiocesium with litterfall in hardwood-Japanese red pine mixed forest and sugi plantation. J Jpn Forest Soc 95:267–274. (in Japanese with English summary).  https://doi.org/10.4005/jjfs.95.267 CrossRefGoogle Scholar
  11. Hoffman FO, Thiessen KM, Rael RM (1995) Comparison of interception and initial retention of wet-deposited contaminants on leaves of different vegetation types. Atmos Environ 29:1771–1775.  https://doi.org/10.1016/1352-2310(95)00099-K CrossRefGoogle Scholar
  12. IAEA (2002) Modelling the migration and accumulation of radionuclides in forest ecosystems. International Atomic Energy Agency, ViennaGoogle Scholar
  13. IAEA (2006) Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience; report of the Chernobyl forum expert group ‘environment. In: Radiological assessment reports series. International Atomic Energy Agency, Vienna, p 166Google Scholar
  14. IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. IAEA Tech Rep Ser 472:191Google Scholar
  15. Imamura N, Komatsu M, Ohashi S, Hashimoto S, Kajimoto T, Kaneko S et al (2017a) Temporal changes in the radiocesium distribution in forests over the five years after the Fukushima Daiichi nuclear power plant accident. Sci Rep- UK 7:8179.  https://doi.org/10.1038/s41598-017-08261-x CrossRefGoogle Scholar
  16. Imamura N, Levia DF, Toriyama J, Kobayashi M, Nanko K (2017b) Stemflow-induced spatial heterogeneity of radiocesium concentrations and stocks in the soil of a broadleaved deciduous forest. Sci Total Environ 599-600:1013–1021.  https://doi.org/10.1016/j.scitotenv.2017.05.017 CrossRefGoogle Scholar
  17. Itoh Y, Imaya A, Kobayashi M (2015) Initial radiocesium deposition on forest ecosystems surrounding the Tokyo metropolitan area due to the Fukushima Daiichi nuclear power plant accident. Hydrol Res Lett 9:1–7.  https://doi.org/10.3178/hrl.9.1 CrossRefGoogle Scholar
  18. Iwagami S, Onda Y, Tsujimura M, Abe Y (2017a) Contribution of radioactive 137Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 166:466–474.  https://doi.org/10.1016/j.jenvrad.2016.07.025 CrossRefGoogle Scholar
  19. Iwagami S, Tsujimura M, Onda Y, Nishino M, Konuma R, Abe Y et al (2017b) Temporal changes in dissolved 137Cs concentrations in groundwater and stream water in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 166:458–465.  https://doi.org/10.1016/j.jenvrad.2015.03.025 CrossRefGoogle Scholar
  20. Iwagami S, Onda Y, Tsujimura M, Hada M, Pun I (2017c) Vertical distribution and temporal dynamics of dissolved 137Cs concentrations in soil water after the Fukushima Dai-ichi Nuclear Power Plant accident. Environ Pollut 230:1090–1098.  https://doi.org/10.1016/j.envpol.2017.07.056 CrossRefGoogle Scholar
  21. Kanasashi T, Sugiura Y, Takenaka C, Hijii N, Uemura M (2015) Radiocesium distribution in sugi (Cryptomeria japonica) in eastern Japan: translocation from needles to pollen. J Environ Radioact 139:398–406.  https://doi.org/10.1016/j.jenvrad.2014.06.018 CrossRefGoogle Scholar
  22. Kato H, Onda Y, Gomi T (2012) Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies. Geophys Res Lett 39:L20403.  https://doi.org/10.1029/2012GL052928 CrossRefGoogle Scholar
  23. Kato H, Onda Y, Loffredo N, Hisadome K, Kawamori A (2017) Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 116:449–457.  https://doi.org/10.1016/j.jenvrad.2015.04.016 CrossRefGoogle Scholar
  24. Kato H, Onda Y, Saidin ZH, Sakashita W, Hisadome K, Loffredo N (2018a) Six-year monitoring study of radiocesium transfer in forest environments following the Fukushima Nuclear Power Plant accident. J Environ Radioactiv In press:105817.  https://doi.org/10.1016/j.jenvrad.2018.09.015 CrossRefGoogle Scholar
  25. Kato H, Onda Y, Wakahara T, Kawamori A (2018b) Spatial pattern of atmospherically deposited radiocesium on the forest floor in the early phase of the Fukushima Daiichi Nuclear Power Plant accident. Sci Total Environ 615:187–196.  https://doi.org/10.1016/j.scitotenv.2017.09.212 CrossRefGoogle Scholar
  26. Khomutinin YV, Kashparov VA, Zhebrovska KI (2004) Sampling optimization when radioecological monitoring. Ukraine Institute for Agricultural Radiology, Kiev, p 137Google Scholar
  27. Kinnersley RP, Shaw G, Bell JNB, Minski J, Goddard AJH (1996) Loss of particulate contaminants from plant canopies under wet and dry conditions. Environ Pollut 91:227–235.  https://doi.org/10.1016/0269-7491(95)00047-X CrossRefGoogle Scholar
  28. Korobova E, Romanov S (2011) Experience of mapping spatial structure of Cs-137 in natural landscape and patterns of its distribution in soil toposequence. J Geochem Explor 109:139–145.  https://doi.org/10.1016/j.gexplo.2011.02.006 CrossRefGoogle Scholar
  29. Landis JD, Hamm NT, Renshaw CE, Dade WB, Magilligan FJ, Gartner JD (2012) Surficial redistribution of fallout 131iodine in a small temperate catchment. P Natl Acad Sci US 109:4064–4069.  https://doi.org/10.1073/pnas.1118665109 CrossRefGoogle Scholar
  30. Levia D, Germer S (2015) A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev Geophys 53:673–714.  https://doi.org/10.1002/2015RG000479 CrossRefGoogle Scholar
  31. Loffredo N, Onda Y, Kawamori A, Kato H (2014) Modeling of leachable Cs-137 in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident. Sci Total Environ 493:701–707.  https://doi.org/10.1016/j.scitotenv.2014.06.059 CrossRefGoogle Scholar
  32. Loffredo N, Onda Y, Hurtevent P, Coppin F (2015) Equation to predict 137Cs leaching dynamic from evergreen canopies after a radio-cesium deposit. J Environ Radioact 147:100–107.  https://doi.org/10.1016/j.jenvrad.2015.05.018 CrossRefGoogle Scholar
  33. Madoz-Escande C, Garcia-Sanchez L, Bonhomme T, Morello M (2005) Influence of rainfall characteristics on elimination of aerosols of cesium, strontium, barium and tellurium deposited on grassland. J Environ Radioact 84:1–20.  https://doi.org/10.1016/j.jenvrad.2005.03.006 CrossRefGoogle Scholar
  34. Melin J, Wallberg L, Suomela J (1994) Distribution and retention of cesium and strontium in Swedish boreal forest ecosystems. Sci Total Environ 157:93–105.  https://doi.org/10.1016/0048-9697(94)90568-1 CrossRefGoogle Scholar
  35. MEXT (2011) Results of the third Airborne monitoring survey by MEXT. radioactivity.nsr.go.jp/en/contents/5000/4182/24/1304797_0708e.pdf. Last Accessed on 1 July 2017
  36. Myttenaere C, Schell WR, Thiry Y, Sombré L, Ronneau C, Van Der Stegen J (1993) Modelling of the Cs-137 cycling in forest: recent development and research needed. Sci Total Environ 136:77–91.  https://doi.org/10.1016/0048-9697(93)90298-K CrossRefGoogle Scholar
  37. Nimis PL (1996) Radiocesium in plants of forest ecosystems. Stud Geobot 15:3–49Google Scholar
  38. Ninemets Y, Tamm U (2005) Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiol 25:1001–1014.  https://doi.org/10.1093/treephys/25.8.1001 CrossRefGoogle Scholar
  39. Nishikiori T, Watanabe M, Koshikawa M, Takamatsu T, Ishii Y, Ito S et al (2015) Uptake and translocation of radiocesium in cedar leaves following the Fukushima nuclear accident. Sci Total Environ 502:611–616.  https://doi.org/10.1016/j.scitotenv.2014.09.063 CrossRefGoogle Scholar
  40. Okada N, Nakai W, Ohashi S, Tanaka A (2015) Radiocesium migration from the canopy to the forest floor in pine and deciduous forests. J Jpn Forest Soc 97:57–62.  https://doi.org/10.4005/jjfs.97.57 CrossRefGoogle Scholar
  41. Onda Y, Kato H, Hoshi M, Takahashi Y, Nguyen M (2015) Soil sampling and analytical strategies for mapping fallout in nuclear emergencies based on the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 139:300–307.  https://doi.org/10.1016/j.jenvrad.2014.06.002 CrossRefGoogle Scholar
  42. Pröhl G (2009) Interception of dry and wet deposited radionuclides by vegetation. J Environ Radioact 100:675–682.  https://doi.org/10.1016/j.jenvrad.2008.10.006 CrossRefGoogle Scholar
  43. Ronneau C, Cara J, Apers D (1987) The deposition of radionuclides from Chernobyl to a forest in Belgium. Atmos Environ 21:1467–1468.  https://doi.org/10.1016/0004-6981(67)90094-7 CrossRefGoogle Scholar
  44. Ronneau C, Sombré L, Myttenaere C, Andre P, Vanhouche M, Cara J (1991) Radiocaesium and potassium behavior in forest trees. J Environ Radioact 14:259–268.  https://doi.org/10.1016/0265-931X(91)90032-B CrossRefGoogle Scholar
  45. Schell WR, Linkov I, Myttenaere C, Morel B (1996) A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents. Health Phys 70:318–335.  https://doi.org/10.1097/00004032-199603000-00002 CrossRefGoogle Scholar
  46. Schimmack W, Bunzl K, Kreutzer K, Rondenkirchen E, Schierl R (1991) Einfluss von fichte (Picea abies L. Karst) und buche (Fagus sylvatica L.) auf die Wanderung von radiocasium im Boden. Fortwiss Forsch 39:242–251Google Scholar
  47. Shcheglov AI, Tsvetnova OB, Klyashtorin AI (2001) Biogeochemical migration of technogenic radionuclides in forest ecosystems. NAUKA, Moscow, p 235Google Scholar
  48. Smith JT, Comans RNJ, Beresford NA, Wright SM, Howard BJ, Camplin WC (2000) Chernobyl’s legacy in food and water. Nature 405:141.  https://doi.org/10.1038/35012139 CrossRefGoogle Scholar
  49. Smith JT, Cross MA, Wright SM (2002) Predicting transfers of 137Cs in terrestrial and aquatic environments: a whole-ecosystem approach. Radioprotection 37:37–42.  https://doi.org/10.1051/radiopro/2002071 CrossRefGoogle Scholar
  50. Smith JT, Wright SM, Cross MA, Monte L, Kudelsky AV, Saxén R et al (2004) Global analysis of the riverine transport of 90Sr and 137Cs. Environ Sci Technol 38:850–857.  https://doi.org/10.1021/es0300463 CrossRefGoogle Scholar
  51. Sombre L, Vanhouche M, Thiry Y, Ronneau C, Lambotte JM, Myttenaere C (1990) Transfer of radiocesium in forest ecosystems resulting from a nuclear accident. In: Desmet G et al (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier Applied Science, London, pp 74–83Google Scholar
  52. Takenaka C, Onda Y, Hamajima Y (1998) Distribution of cesium-137 in Japanese forest soils: correlation with the contents of organic carbon. Sci Total Environ 222:193–199.  https://doi.org/10.1016/S0048-9697(98)00305-2 CrossRefGoogle Scholar
  53. Tamura T (1964) Selective sorption reaction of cesium with mineral soils. Nucl Saf 5:262–268Google Scholar
  54. Thiry Y (1997) Etude du cycle du radiocesium en ecosysteme forestier: Distribution et facteurs de mobilité. Thesis, Université Catholique de Louvain, Louvain-la-Neuve, BelgiumGoogle Scholar
  55. Thiry Y, Garcia-Sanchez L, Hurtevent P (2016) Experimental quantification of radiocesium recycling in a coniferous tree after aerial contamination: field loss dynamics, translocation and final partitioning. J Environ Radioact 161:42–50.  https://doi.org/10.1016/j.jenvrad.2015.12.017 CrossRefGoogle Scholar
  56. Tikhomirov FA, Shcheglov AI (1991) The radiological consequences of the Kyshtym and Chernobyl radiation accidents for forest ecosystems. In: Proceedings of the seminar on comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents, Kyshtym, Windscale, Chernobyl. CEC, Luxembourg, 1–5 October 1990, H, EUR 13574, pp 867–888Google Scholar
  57. Walling DE (2002) Recent advances in the use of environmental radionuclides in soil erosion investigations. IAEA-SM-363/89, Report No IAEA-CSP--11/C, pp 279–301Google Scholar
  58. Yoshihara T, Matsumura H, Tsuzaki M, Wakamatsu T, Kobayashi T, Hashida S, Nagaoka T, Goto F (2014) Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013. J Environ Radioact 138:220–226.  https://doi.org/10.1016/j.jenvrad.2014.09.002 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of TsukubaTsukubaJapan

Personalised recommendations