Advertisement

Cracking “Open” Technology in Ecohydrology

  • B. Turner
  • D. J. HillEmail author
  • K. Caton
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 240)

Abstract

In recent years, the adjective “open” has been applied to many aspects of scientific knowledge discovery and dissemination, including open-source software and hardware, open access journal articles, massive open online courses, and open data. Applying the term open to these entities emphasizes an intention for them to be accessible—a quality increasingly emphasized as desirable in science. This chapter explores what it means for technology to be open and how open technology is transforming the field of ecohydrology today. Starting from the concept of open science, the next section explores the open science ideals of open source, open method, open data, and open hardware and develops a consistent definition of open technology. Based on this definition, a review of open technology applications and development within the field of hydrology is presented that categorizes technology into truly open and quasi-open and discusses how this technology is enabling hydrologic research. The chapter then concludes with a discussion of the potential of open technology to advance the field of ecohydrology.

Notes

Acknowledgments

This work is supported in part by the Natural Science and Engineering Research Council of Canada through grant number RGPIN 2014-06114 (Hill). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the authors.

References

  1. Ackermann JR (2009) Toward open source hardware. U Dayton L Rev 34:41Google Scholar
  2. Bartos M, Wong B, Kerkez B (2018) Open storm: a complete framework for sensing and control of urban watersheds. Environ Sci Water Res Technol 4:346–358.  https://doi.org/10.1039/C7EW00374A CrossRefGoogle Scholar
  3. Bitella G, Rossi R, Bochicchio R, Perniola M, Amato M (2014) A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters. Sensors-Basel 14:19639–19659.  https://doi.org/10.3390/s141019639 CrossRefGoogle Scholar
  4. Bonney R, Shirk J, Phillips T, Wiggins A, Ballard H, Miller-Rushing A et al (2014) Next steps for citizen science. Science 343:1436–1437.  https://doi.org/10.1126/science.1251554 CrossRefGoogle Scholar
  5. Brown H, Carrick S, Müller K, Thomas S, Sharp J, Cichota R et al (2018) Modelling soil-water dynamics in the rootzone of structured and water-repellent soils. Comput Geosci 113:33–42.  https://doi.org/10.1016/j.cageo.2018.01.014 CrossRefGoogle Scholar
  6. Campbell EG, Clarridge BR, Gokhale M, Birenbaum L, Hilgartner S, Holtzman NA et al (2002) Data withholding in academic genetics: evidence from a national survey. JAMA-J Am Med Assoc 287:473.  https://doi.org/10.1001/jama.287.4.473 CrossRefGoogle Scholar
  7. Casadei S, Pierleoni A, Bellezza M (2018) Sustainability of water withdrawals in the Tiber River basin (Central Italy). Sustainability-Basel 10:485.  https://doi.org/10.3390/su10020485 CrossRefGoogle Scholar
  8. Challco BMS, Masó JP, Pesquer LM (2017) Estudio del estándar WATERML. Geofocus Revista Internacional de Ciencia y Tecnología de la información Geográfica 19:129–150.  https://doi.org/10.21138/GF.485 CrossRefGoogle Scholar
  9. Chignard S (2013, March 29) A brief history of open data. Paris Innovation Review Retrieved June 27, 2018, from http://parisinnovationreview.com/articles-en/a-brief-history-of-open-data
  10. Cohn J (2008) Citizen science: can volunteers do real research? Bioscience 58:192–197.  https://doi.org/10.1641/B580303 CrossRefGoogle Scholar
  11. David PA (2004) Understanding the emergence of “open science” institutions: functionalist economics in historical context. Ind Corp Chang 13:571–589.  https://doi.org/10.1093/icc/dth023 CrossRefGoogle Scholar
  12. Dile YT, Daggupati P, George C, Srinivasan R, Arnold J (2016) Introducing a new open source GIS user interface for the SWAT model. Environ Model Softw 85:129–138.  https://doi.org/10.1016/j.envsoft.2016.08.004 CrossRefGoogle Scholar
  13. Fecher B, Friesike S (2014) Open science: one term, five schools of thought. In: Bartling S, Friesike S (eds) Opening science: the evolving guide on how the internet is changing research, collaboration and scholarly publishing. Springer, Cham, pp 17–47.  https://doi.org/10.1007/978-3-319-00026-8_2 CrossRefGoogle Scholar
  14. Fisher DK, Gould P (2012) Open-source hardware is a low-cost alternative for scientific instrumentation and research. Modern Instrum 01:8–20.  https://doi.org/10.4236/mi.2012.12002 CrossRefGoogle Scholar
  15. Flint CG, Jones AS, Horsburgh JS (2017) Data management dimensions of social water science: the iUtah experience. J Am Water Resour As 53:988–996.  https://doi.org/10.1111/1752-1688.12568 CrossRefGoogle Scholar
  16. George C, Leon LF (2008) Waterbase: SWAT in an open source GIS. Open Hydrol J 2:1–6.  https://doi.org/10.2174/1874378100802010001 CrossRefGoogle Scholar
  17. Government of Canada (2017) Open data 101. Retrieved October 1, 2018, from https://open.canada.ca/en/open-data-principles
  18. Haefliger S, von Krogh G, Spaeth S (2008) Code reuse in open source software. Manag Sci 54:180–193.  https://doi.org/10.1287/mnsc.1070.0748 CrossRefGoogle Scholar
  19. Haeussler C (2011) Information-sharing in academia and the industry: a comparative study. Res Policy 40:105–122.  https://doi.org/10.1016/j.respol.2010.08.007 CrossRefGoogle Scholar
  20. Hartanto IM, van der Kwast J, Alexandridis TK, Almeida W, Song Y, van Andel SJ et al (2017) Data assimilation of satellite-based actual evapotranspiration in a distributed hydrological model of a controlled water system. Int J Appl Earth Obs 57:123–135.  https://doi.org/10.1016/j.jag.2016.12.015 CrossRefGoogle Scholar
  21. Heidorn PB (2008) Shedding light on the dark data in the long tail of science. Libr Trends 57:280–299.  https://doi.org/10.1353/lib.0.0036 CrossRefGoogle Scholar
  22. Hill DJ, Liu Y, Marini L, Kooper R, Rodriguez A, Futrelle J et al (2011) A virtual sensor system for user-generated, real-time environmental data products. Environ Model Softw 26:1710–1724.  https://doi.org/10.1016/j.envsoft.2011.09.001 CrossRefGoogle Scholar
  23. Hill DJ, Kerkez B, Rasekh A, Ostfeld A, Minsker B, Banks MK (2014) Sensing and cyberinfrastructure for smarter water management: the promise and challenge of ubiquity. J Water Resour Plan Manag 140:01814002.  https://doi.org/10.1061/(ASCE)WR.1943-5452.0000449 CrossRefGoogle Scholar
  24. Hofierka J, Lacko M, Zubal S (2017) Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP. Comput Geosci 107:20–27.  https://doi.org/10.1016/j.cageo.2017.07.007 CrossRefGoogle Scholar
  25. Holmes D, McEvoy J, Dixon J, Payne S (2017) A geospatial approach for identifying and exploring potential natural water storage sites. Water-Base 9:585.  https://doi.org/10.3390/w9080585 CrossRefGoogle Scholar
  26. Horsburgh JS, Morsy MM, Castronova AM, Goodall JL, Gan T, Yi H et al (2016) HydroShare: sharing diverse environmental data types and models as social objects with application to the hydrology domain. J Am Water Res As 52:873–889.  https://doi.org/10.1111/1752-1688.12363 CrossRefGoogle Scholar
  27. Jones AS, Horsburgh JS, Reeder SL, Ramírez M, Caraballo J (2015) A data management and publication workflow for a large-scale, heterogeneous sensor network. Environ Monit Assess 187:348.  https://doi.org/10.1007/s10661-015-4594-3 CrossRefGoogle Scholar
  28. Kerkez B, Glasser SD, Bales RC, Meadows W (2012) Design and performance of a wireless sensor network for catchment-scale snow and soil moisture measurements. Water Resour Res 48:W09515.  https://doi.org/10.1029/2011WR011214 CrossRefGoogle Scholar
  29. Kneis D (2015) A lightweight framework for rapid development of object-based hydrological model engines. Environ Model Softw 68:110–121.  https://doi.org/10.1016/j.envsoft.2015.02.009 CrossRefGoogle Scholar
  30. Koenka IJ, Sáiz J, Hauser PC (2014) Instrumentino: an open-source modular Python framework for controlling Arduino based experimental instruments. Comput Phys Commun 185:2724–2729.  https://doi.org/10.1016/j.cpc.2014.06.007 CrossRefGoogle Scholar
  31. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T et al (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599.  https://doi.org/10.1007/s12665-012-1546-x CrossRefGoogle Scholar
  32. Lampert DJ, Wu M (2015) Development of an open-source software package for watershed modeling with the hydrological simulation program in Fortran. Environ Model Softw 68:166–174.  https://doi.org/10.1016/j.envsoft.2015.02.018 CrossRefGoogle Scholar
  33. Lee DY, De Meo OA, Thomas RB, Tillett AL, Neubauer SC (2016) Design and construction of an automated irrigation system for simulating saltwater intrusion in a tidal freshwater wetland. Wetlands 36:889–898.  https://doi.org/10.1007/s13157-016-0801-4 CrossRefGoogle Scholar
  34. Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E et al (2007) Complexity of coupled human and natural systems. Science 317:1513–1516.  https://doi.org/10.1126/science.1144004 CrossRefGoogle Scholar
  35. López-Vicente M, Pérez-Bielsa C, López-Montero T, Lambán LJ, Navas A (2014) Runoff simulation with eight different flow accumulation algorithms: recommendations using a spatially distributed and open-source model. Environ Model Softw 62:11–21.  https://doi.org/10.1016/j.envsoft.2014.08.025 CrossRefGoogle Scholar
  36. McCabe MF, Rodell M, Alsdorf DE, Miralles DG, Uijlenhoet R, Wagner W et al (2017) The future of Earth observation in hydrology. Hydrol Earth Syst Sci 21:3879–3914.  https://doi.org/10.5194/hess-21-3879-2017 CrossRefGoogle Scholar
  37. McCall RT, Masselink G, Poate TG, Roelvink JA, Almeida LP, Davidson M, Russell PE (2014) Modelling storm hydrodynamics on gravel beaches with XBeach-G. Coast Eng 91:231–250.  https://doi.org/10.1016/j.coastaleng.2014.06.007 CrossRefGoogle Scholar
  38. Merton RK (1973) The sociology of science: theoretical and empirical investigations. University of Chicago Press, ChicagoGoogle Scholar
  39. Molloy JC (2011) The Open Knowledge Foundation: open data means better science. PLoS Biol 9:e1001195.  https://doi.org/10.1371/journal.pbio.1001195 CrossRefGoogle Scholar
  40. National Research Council (1995) On the full and open exchange of scientific data. National Academies Press, Washington, DC.  https://doi.org/10.17226/18769 CrossRefGoogle Scholar
  41. Niemi TJ, Warsta L, Taka M, Hickman B, Pulkkinen S, Krebs G et al (2017) Applicability of open rainfall data to event-scale urban rainfall-runoff modelling. J Hydrol 547:143–155.  https://doi.org/10.1016/j.jhydrol.2017.01.056 CrossRefGoogle Scholar
  42. Open Source Hardware Association (n.d.). Definition. Retrieved June 27, 2018, from https://www.oshwa.org/definition/
  43. Pearce JM (2012) Building research equipment with free, open-source hardware. Science 337(6100):1303–1304.  https://doi.org/10.1126/science.1228183 CrossRefGoogle Scholar
  44. Phelps L, Fox B, Marincola F (2012) Supporting the advancement of science: open access publishing and the role of mandates. J Transl Med 10:13.  https://doi.org/10.1186/1479-5876-10-13 CrossRefGoogle Scholar
  45. Pontes PRM, Fan FM, Fleischmann AS, de Paiva RCD, Buarque DC, Siqueira VA et al (2017) MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS. Environ Model Softw 94:1–20.  https://doi.org/10.1016/j.envsoft.2017.03.029 CrossRefGoogle Scholar
  46. Prescott E, Rome C, Heinzmann C, Hawkins M, Marchiori A, Hayes BR (2016) Hydrosense: an open platform for hydroclimatic monitoring. In: Proceedings of the 2016 IEEE international conference on smart computing (SMARTCOMP), pp 1–5. https:// https://doi.org/10.1109/SMARTCOMP.2016.7501695
  47. Radio CBC (2018, August 10) “losing earth”: do we have a collective moral responsibility to fight climate change? CBC Radio. Canadian Broadcasting Corporation. Retrieved from https://www.cbc.ca/radio/day6/episode-402-saudi-trolls-vs-canada-alex-jones-s-precarious-empire-losing-earth-pampered-poultry-and-more-1.4777781/losing-earth-do-we-have-a-collective-moral-responsibility-to-fight-climate-change-1.4777798
  48. Rahman K, Ray N, Giuliani G, Maringanti C, George C, Lehmann A (2017) Breaking walls towards fully open source hydrological modeling. Water Res 44:23–30.  https://doi.org/10.1134/S0097807817010067 CrossRefGoogle Scholar
  49. Rudiyanto MB, Setiawan BI, Saptomo SK, McBratney AB (2018) Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma 313:25–40.  https://doi.org/10.1016/j.geoderma.2017.10.018 CrossRefGoogle Scholar
  50. Sanhouse-Garcia AJ, Bustos-Terrones Y, Rangel-Peraza JG, Quevedo-Castro A, Pacheco C (2017) Multi-temporal analysis for land use and land cover changes in an agricultural region using open source tools. Remote Sens Appl Soc Environ 8:278–290.  https://doi.org/10.1016/j.rsase.2016.11.002 CrossRefGoogle Scholar
  51. Siles G, Voirin Y, Bénié GB (2018) Open-source based geo-platform to support management of wetlands and biodiversity in Quebec. Ecol Inform 43:84–95.  https://doi.org/10.1016/j.ecoinf.2017.11.005 CrossRefGoogle Scholar
  52. Sommerlot AR, Wagena MB, Fuka DR, Easton ZM (2016) Coupling the short-term global forecast system weather data with a variable source area hydrologic model. Environ Model Softw 86:68–80.  https://doi.org/10.1016/j.envsoft.2016.09.008 CrossRefGoogle Scholar
  53. Soranno PA, Bissell EG, Cheruvelil KS, Christel ST, Collins SM, Fergus CE et al (2015) Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse. GigaScience 4:28.  https://doi.org/10.1186/s13742-015-0067-4 CrossRefGoogle Scholar
  54. Stallman R (n.d.) Why open source misses the point of free software. Retrieved October 1, 2018, from https://www.gnu.org/philosophy/open-source-misses-the-point.html
  55. Steiner JL, Sadler EJ, Hatfield JL, Wilson G, James D, Vandenberg B et al (2009) Data management to enhance long-term watershed research capacity: context and STEWARDS case study. Ecohydrology 2:391–398.  https://doi.org/10.1002/eco.89 CrossRefGoogle Scholar
  56. Stengers I (2018) Another science is possible: a manifesto for slow science. Polity, CambridgeGoogle Scholar
  57. Strauch R, Istanbulluoglu E, Nudurupati SS, Bandaragoda C, Gasparini NM, Tucker GE (2017) A hydro-climatological approach to predicting regional landslide probability using Landlab. Earth Surf Dynam 6:49–75.  https://doi.org/10.5194/esurf-2017-39 CrossRefGoogle Scholar
  58. Swain NR, Latu K, Christensen SD, Jones NL, Nelson EJ, Ames DP, Williams GP (2015) A review of open source software solutions for developing water resources web applications. Environ Model Softw 67:108–117.  https://doi.org/10.1016/j.envsoft.2015.01.014 CrossRefGoogle Scholar
  59. Tesfatsion L, Rehmann CR, Cardoso DS, Jie Y, Gutowski WJ (2017) An agent-based platform for the study of watersheds as coupled natural and human systems. Environ Model Softw 89:40–60.  https://doi.org/10.1016/j.envsoft.2016.11.021 CrossRefGoogle Scholar
  60. Thorp KR, Bronson KF (2013) A model-independent open-source geospatial tool for managing point-based environmental model simulations at multiple spatial locations. Environ Model Softw 50:25–36.  https://doi.org/10.1016/j.envsoft.2013.09.002 CrossRefGoogle Scholar
  61. Tinel C, Grizonnet M, Fontannaz D, de Boissezon H, Giros A (2012) Orfeo, the pleiades accompaniment program and its users thematic commissioning. Int Arch Photogramm XXXIX-B3:569–572.  https://doi.org/10.5194/isprsarchives-XXXIX-B3-569-2012 CrossRefGoogle Scholar
  62. Turner B, Hill DJ, Carlyle-Moses DE, Rahman M (2019) Low-cost, high-resolution stemflow sensing. J Hydrol 570:62–68.  https://doi.org/10.1016/j.hydrol.2018.12.072 CrossRefGoogle Scholar
  63. United Nations General Assembly (2010) Resolution 64-292 adopted by the General Assembly on 28 July 2010. United NationsGoogle Scholar
  64. van Griensven A, Breuer L, Di Luzio M, Vandenberghe V, Goethals P, Meixner T et al (2006) Environmental and ecological hydroinformatics to support the implementation of the European Water Framework Directive for river basin management. J Hydroinf 8:239–252.  https://doi.org/10.2166/hydro.2006.010 CrossRefGoogle Scholar
  65. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288.  https://doi.org/10.1126/science.289.5477.284 CrossRefGoogle Scholar
  66. Yu J, Taylor P, Cox SJD, Walker G (2015) Validating observation data in WaterML 2.0. Comput Geosci 82:98–110.  https://doi.org/10.1016/j.cageo.2015.06.001 CrossRefGoogle Scholar
  67. Zhang Y, Zhang Z, Reed S, Koren V (2011) An enhanced and automated approach for deriving a priori SAC-SMA parameters from the soil survey geographic database. Comput Geosci 37:219–231.  https://doi.org/10.1016/j.cageo.2010.05.016 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Geography and Environmental StudiesThompson Rivers UniversityKamloopsCanada
  2. 2.Department of Tourism ManagementThompson Rivers UniversityKamloopsCanada

Personalised recommendations