Advertisement

Spatial Temporal Trajectory Similarity Join

  • Tangpeng Dan
  • Changyin LuoEmail author
  • Yanhong Li
  • Bolong Zheng
  • Guohui Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11642)

Abstract

Existing works only focus on spatial dimension without the consideration of combining spatial and temporal dimensions together when processing trajectory similarity join queries, to address this problem, this paper proposes a novel two-level grid index which takes both spatial and temporal information into account when processing spatial-temporal trajectory similarity join. A new similarity function MOGS is developed to measure the similarity in an efficient manner when our candidate trajectories have high coverage rate CR. Extensive experiments are conducted to verify the efficiency of our solution.

Keywords

Spatial-temporal database Two-level grid index Trajectory similarity join 

Notes

Acknowledgments

This work is supported in part by Hubei Natural Science Foundation under Grant No. 2017CFB135, NSFC Grant No. 61309002, and the Fundamental Research Funds for the Central Universities under Grants No. CCNU18QN017, CZZ17003, and Teaching Research Projects NO. JYX17032.

References

  1. 1.
    Assent, I., Wichterich, M., Krieger, R., Kremer, H., Seidl, T.: Anticipatory DTW for efficient similarity search in time series databases. Proc. VLDB 2(1), 826–837 (2009)CrossRefGoogle Scholar
  2. 2.
    Lin, B., Su, J.: Shapes based trajectory queries for moving objects, pp. 21–30 (2005)Google Scholar
  3. 3.
    Na, T., Li, G., Xie, Y., Li, C., Hao, S., Feng, J.: Signature-based trajectory similarity join. IEEE TKDE 29(4), 870–883 (2017)Google Scholar
  4. 4.
    Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. Proc. VLDB 29, 802–813 (2003)Google Scholar
  5. 5.
    Sakurai, Y., Yoshikawa, M., Faloutsos, C.: FTW: fast similarity search under the time warping distance. In: Twenty-Fourth ACM Sigmod-Sigact-Sigart Symposium on Principles of Database Systems (2005)Google Scholar
  6. 6.
    Shang, S., Chen, L., Jensen, C.S., Wen, J.R., Kalnis, P.: Searching trajectories by regions of interest. IEEE TKDE 29(7), 1549–1562 (2017)Google Scholar
  7. 7.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. Proc. VLDB 10(11), 1178–1189 (2017)CrossRefGoogle Scholar
  8. 8.
    Wang, S., Bao, Z., Culpepper, J.S., Xie, Z., Liu, Q., Qin, X.: Torch: a search engine for trajectory data. In: SIGIR, pp. 535–544 (2018)Google Scholar
  9. 9.
    Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: Fourteenth International Conference on Data Engineering, pp. 201–208 (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tangpeng Dan
    • 1
    • 2
  • Changyin Luo
    • 1
    • 2
    Email author
  • Yanhong Li
    • 3
  • Bolong Zheng
    • 4
  • Guohui Li
    • 4
  1. 1.School of ComputerCentral China Normal UniversityWuhanChina
  2. 2.Hubei Provincial Key Laboratory of Artificial Intelligence and Smart LearningCentral China Normal UniversityWuhanChina
  3. 3.College of Computer ScienceSouth-Central University for NationalitiesWuhanChina
  4. 4.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations