Advertisement

Cluster Analysis

  • Wolfgang Karl HärdleEmail author
  • Léopold Simar
Chapter

Abstract

The next two chapters address classification issues from two varying perspectives. When considering groups of objects in a multivariate data set, two situations can arise.

References

  1. D. Arthur, S. Vassilvitskii, K-means++: the advantages of careful seeding, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, Philadelphia, PA, USA (2007), pp. 1027–1035. Society for Industrial and Applied Mathematics. ISBN 978-0-898716-24-5. http://dl.acm.org/citation.cfm?id=1283383.1283494
  2. K. Efimov, L. Adamyan, V. Spokoiny, Adaptive weights clustering. J. R. Stat. Soc. (2017)Google Scholar
  3. C. James, Bezdek (Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell, MA, USA, 1981). ISBN 0306406713Google Scholar
  4. S.P. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)MathSciNetCrossRefGoogle Scholar
  5. U. Luxburg, A tutorial on spectral clustering. Stat. Comput.17(4), 395–416 (2007). ISSN 0960-3174. http://dx.doi.org/10.1007/s11222-007-9033-z

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institute of Statistics, Biostatistics and Actuarial SciencesUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations