Advertisement

Catalytic Materials for Hydrodesulfurization Processes, Experimental Strategies to Improve Their Performance

  • Jorge RamírezEmail author
  • Perla Castillo-Villalón
  • Aída Gutiérrez-Alejandre
  • Rogelio Cuevas
  • Aline Villarreal
Chapter

Abstract

The performance of catalytic materials for hydrodesulfurization processes is highly sensitive to the preparation method and to the activation procedure. Important improvements in activity and selectivity can be achieved through the selection of adequate support matrix, use of organic additives, different precursor salts, and use of sulfidation procedures that favor complete sulfidation of the precursors of the active sulfided phase. Several essential experimental strategies to improve the performance of HDS catalysts are discussed here in the light of some of the works performed in our laboratory. Important activity and selectivity changes during the hydrodesulfurization of sulfur-containing molecules of different structure and reactivity (thiophene, dibenzothiophene, and 4,6-dimethyldibenzothiophene) over Mo, CoMo, and NiMo sulfides are produced when the catalyst support matrix is changed from alumina to titania. The comparison evidenced that the promotional effect of Co and Ni is substantially different for each reactive molecule on the different catalyst series. Similarly, positive changes in activity are produced with the use of EDTA or citric acid as organic additives during the preparation of alumina-supported unpromoted and co-promoted molybdenum sulfide. Differences in the extent of promotion are the source of the activity improvements when Co(Ni)-Mo(W)-based heteropolycompounds are used as alternative active-phase precursors in catalyst preparations. Some important preparation aspects are discussed for the design of selective HDS catalytic materials for hydrodesulfurization of FCC gasoline, which must provide high hydrodesulfurization without increasing the hydrogenation reactions. Finally, the importance of choosing a proper methodology for the activation of the supported phases to achieve an improved performance of the catalytic materials is highlighted.

Keywords

HDS Catalytic materials Matrix support effects Organic additives Co(Ni)-Mo(W)-based heteropolycompounds Sulfidation methodology 

Notes

Acknowledgements

We acknowledge Facultad de Química-UNAM, PAIP 5000-9072, for financial support.

References

  1. 1.
    H. Topsøe, B.S. Clausen, F.E. Massoth, Hydrotreating catalysis, in Catalysis, ed. by A. J. R. Boudart, M., (Springer-Verlag, Berlin Heidelberg New York, 1996), pp. 1–269.  https://doi.org/10.1007/978-3-642-61040-0_1CrossRefGoogle Scholar
  2. 2.
    L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999).  https://doi.org/10.1006/jcat.1999.2598CrossRefGoogle Scholar
  3. 3.
    P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, Ab Initio study of the H2–H2S/MoS2 gas–solid interface: the nature of the catalytically active sites. J. Catal. 189, 129 (2000).  https://doi.org/10.1006/jcat.1999.2698CrossRefGoogle Scholar
  4. 4.
    P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst: an ab initio local density functional study. J. Catal. 190, 128–143 (2000).  https://doi.org/10.1006/jcat.1999.2743CrossRefGoogle Scholar
  5. 5.
    H. Schweiger, P. Raybaud, G. Kresse, H. Toulhoat, Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study. J. Catal. 207, 76–87 (2002).  https://doi.org/10.1006/jcat.2002.3508CrossRefGoogle Scholar
  6. 6.
    H. Schweiger, P. Raybaud, H. Toulhoat, Promoter sensitive shapes of Co(Ni)MoS nanocatalysts in sulfo-reductive conditions. J. Catal. 212, 33–38 (2002).  https://doi.org/10.1006/jcat.2002.3737CrossRefGoogle Scholar
  7. 7.
    S. Cristol, J.F. Paul, E. Payen, D. Bougeard, S. Clémendot, F. Hutschka, Theoretical study of the MoS2 (100) surface: a chemical potential analysis of sulfur and hydrogen coverage. 2. Effect of the total pressure on surface stability. J. Phys. Chem. B 106, 5659–5667 (2002).  https://doi.org/10.1021/jp0134603CrossRefGoogle Scholar
  8. 8.
    M.V. Bollinger, K.W. Jacobsen, J.K. Nørskov, Atomic and electronic structure of MoS2 nanoparticles. Phys. Rev. B 67, 085410 (2003).  https://doi.org/10.1103/PhysRevB.67.085410CrossRefGoogle Scholar
  9. 9.
    B. Hinnemann, J.K. Nørskov, H. Topsøe, A density functional study of the chemical differences between type I and type II MoS2-based structures in hydrotreating catalysts. J. Phys. Chem. B 109, 2245–2253 (2005).  https://doi.org/10.1021/jp048842yCrossRefGoogle Scholar
  10. 10.
    S. Helveg, J.V. Lauritsen, E. Laegsgaard, I. Stensgaard, J.K. Nørskov, B.S. Clausen, H. Topsøe, F. Besenbacher, Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84, 951–954 (2000).  https://doi.org/10.1103/PhysRevLett.84.951CrossRefGoogle Scholar
  11. 11.
    J.V. Lauritsen, S. Helveg, E. Lægsgaard, I. Stensgaard, B.S. Clausen, H. Topsøe, F. Besenbacher, Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts. J. Catal. 197, 1–5 (2001).  https://doi.org/10.1006/jcat.2000.3088CrossRefGoogle Scholar
  12. 12.
    A.K. Tuxen, H.G. Füchtbauer, B. Temel, B. Hinnemann, H. Topsøe, K.G. Knudsen, F. Besenbacher, J.V. Lauritsen, Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co–Mo–S hydrotreating catalysts. J. Catal. 295, 146–154 (2012).  https://doi.org/10.1016/j.jcat.2012.08.004CrossRefGoogle Scholar
  13. 13.
    Á. Logadóttir, P.G. Moses, B. Hinnemann, N.Y. Topsøe, K.G. Knudsen, H. Topsøe, J.K. Nørskov, A density functional study of inhibition of the HDS hydrogenation pathway by pyridine, benzene, and H2S on MoS2-based catalysts. Catal. Today 111, 44–51 (2006).  https://doi.org/10.1016/j.cattod.2005.10.018CrossRefGoogle Scholar
  14. 14.
    R. Candia, O. Sørensen, J. Villadsen, N.-Y. Topsøe, B.S. Clausen, H. Topsøe, Effect of sulfiding temperature on activity and structures of Co-Mo/Al2O3 catalysts. II. Bull. Soc. Chim. Belg. 93, 763–773 (1984).  https://doi.org/10.1002/bscb.19840930818CrossRefGoogle Scholar
  15. 15.
    J. Ramirez, S. Fuentes, G. Díaz, M. Vrinat, M. Breysse, M. Lacroix, Hydrodesulphurization activity and characterization of sulphided molybdenum and cobalt-molybdenum catalysts. Comparison of alumina-, silica-alumina- and titania-supported catalysts. Appl. Catal. 52, 211–224 (1989).  https://doi.org/10.1016/S0166-9834(00)83385-0CrossRefGoogle Scholar
  16. 16.
    J. Ramírez, F. Sánchez-Minero, Support effects in the hydrotreatment of model molecules. Catal. Today 130, 267–271 (2008).  https://doi.org/10.1016/j.cattod.2007.10.103CrossRefGoogle Scholar
  17. 17.
    H. Shimada, T. Sato, Y. Yoshimura, J. Hiraishi, A. Nishijima, Support effect on the catalytic activity and properties of sulfided molybdenum catalysts. J. Catal. 110, 275–284 (1988).  https://doi.org/10.1016/0021-9517(88)90319-3CrossRefGoogle Scholar
  18. 18.
    M. Breysse, J.L. Portefaix, M. Vrinat, Support effects on hydrotreating catalysts. Catal. Today 10, 489–505 (1991).  https://doi.org/10.1016/0920-5861(91)80035-8CrossRefGoogle Scholar
  19. 19.
    A. Stanislaus, A. Marafi, M.S. Rana, Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today 153, 1–68 (2010).  https://doi.org/10.1016/j.cattod.2010.05.011CrossRefGoogle Scholar
  20. 20.
    H. Shimada, Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance. Catal. Today 86, 17–29 (2003).  https://doi.org/10.1016/S0920-5861(03)00401-2CrossRefGoogle Scholar
  21. 21.
    J. Ramirez, L. Cedeño, G. Busca, The role of titania support in Mo-based hydrodesulfurization catalysts. J. Catal. 184, 59–67 (1999).  https://doi.org/10.1006/jcat.1999.2451CrossRefGoogle Scholar
  22. 22.
    J. Ramírez, G. Macías, L. Cedeño, A. Gutiérrez-Alejandre, R. Cuevas, P. Castillo, The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: analysis of past and new evidences. Catal. Today 98, 19–30 (2004).  https://doi.org/10.1016/j.cattod.2004.07.050CrossRefGoogle Scholar
  23. 23.
    L. Coulier, J.A.R. van Veen, J.W. Niemantsverdriet, TiO2-supported Mo model catalysts: Ti as promoter for thiophene HDS. Catal. Lett. 79, 149–155 (2002).  https://doi.org/10.1023/A:1015312509749CrossRefGoogle Scholar
  24. 24.
    C. Arrouvel, M. Breysse, H. Toulhoat, P. Raybaud, A density functional theory comparison of anatase (TiO2)- and γ-Al2O3-supported MoS2 catalysts. J. Catal. 232, 161–178 (2005).  https://doi.org/10.1016/j.jcat.2005.02.018CrossRefGoogle Scholar
  25. 25.
    P. Castillo-Villalón, J. Ramírez, R. Cuevas, P. Vázquez, R. Castañeda, Influence of the support on the catalytic performance of Mo, CoMo, and NiMo catalysts supported on Al2O3 and TiO2 during the HDS of thiophene, dibenzothiophene, or 4,6-dimethyldibenzothiophene. Catal. Today 259, 140–149 (2015).  https://doi.org/10.1016/j.cattod.2015.06.008CrossRefGoogle Scholar
  26. 26.
    R.R. Chianelli, G. Berhault, P. Raybaud, S. Kasztelan, J. Hafner, H. Toulhoat, Periodic trends in hydrodesulfurization: in support of the Sabatier principle. Appl. Catal. A Gen. 227, 83–96 (2002).  https://doi.org/10.1016/S0926-860X(01)00924-3CrossRefGoogle Scholar
  27. 27.
    J. Ramírez, A. Gutierrez-Alejandre, Characterization and hydrodesulfurization activity of W-based catalysts supported on Al2O3–TiO2 mixed oxides. J. Catal. 170, 108–122 (1997).  https://doi.org/10.1006/jcat.1997.1713CrossRefGoogle Scholar
  28. 28.
    D. Costa, C. Arrouvel, M. Breysse, H. Toulhoat, P. Raybaud, Edge wetting effects of γ-Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: A DFT study. J. Catal. 246, 325–343 (2007).  https://doi.org/10.1016/j.jcat.2006.12.007CrossRefGoogle Scholar
  29. 29.
    T.G. Kaufmann, A. Kaldor, G.F. Stuntz, M.C. Kerby, L.L. Ansell, Catalysis science and technology for cleaner transportation fuels. Catal. Today 62, 77–90 (2000).  https://doi.org/10.1016/S0920-5861(00)00410-7CrossRefGoogle Scholar
  30. 30.
    P. Gripka, O. Bhan, W. Whitecotton, J. Esteban, Catalytic strategies to meet gasoline sulphur limits. Digit. Refining Process. Oper. Maintenance (2015). www.digitalrefining.com/article/1001120
  31. 31.
    C. Song, An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 86, 211–263 (2003).  https://doi.org/10.1016/S0920-5861(03)00412-7CrossRefGoogle Scholar
  32. 32.
    G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters: Design, Innovation, and Discovery, 2nd edn. (John Wiley & Sons, Inc., Hoboken, NJ, 2005)Google Scholar
  33. 33.
    H. Shimada, M. Kurita, T. Sato, Y. Yoshimura, T. Hirata, T. Konakahara, K. Sato, A. Nishihima, Support effect on the hydrocracking activity of molybdenum catalysts. Chem. Lett. 13, 1861–1864 (1984).  https://doi.org/10.1246/cl.1984.1861CrossRefGoogle Scholar
  34. 34.
    T. Klicpera, M. Zdražil, High surface area MoO3/MgO: preparation by the new slurry impregnation method and activity in sulphided state in hydrodesulphurization of benzothiophene. Catal. Lett. 58, 47–51 (1999).  https://doi.org/10.1023/A:1019036724583CrossRefGoogle Scholar
  35. 35.
    T. Klicpera, M. Zdražil, Synthesis of a high surface area monolayer MoO3/MgO catalyst in a (NH4)6Mo7O24/MgO/methanol slurry, and its hydrodesulfurization activity. J. Mater. Chem. 10, 1603–1608 (2000).  https://doi.org/10.1039/b001375gCrossRefGoogle Scholar
  36. 36.
    T. Klimova, D. Solís Casados, J. Ramirez, New selective Mo and NiMo HDS catalysts supported on Al2O3-MgO(x) mixed oxides. Catal. Today 43, 135–146 (1998).  https://doi.org/10.1016/S0920-5861(98)00142-4CrossRefGoogle Scholar
  37. 37.
    D. Solís, T. Klimova, J. Ramírez, T. Cortez, NiMo/Al2O3–MgO(x) catalysts: the effect of the prolonged exposure to ambient air on the textural and catalytic properties. Catal. Today 98, 99–108 (2004).  https://doi.org/10.1016/j.cattod.2004.07.024CrossRefGoogle Scholar
  38. 38.
    D. Mey, S. Brunet, C. Canaff, F. Maugé, C. Bouchy, F. Diehl, HDS of a model FCC gasoline over a sulfided CoMo/Al2O3 catalyst: Effect of the addition of potassium. J. Catal. 227, 436–447 (2004).  https://doi.org/10.1016/j.jcat.2004.07.013CrossRefGoogle Scholar
  39. 39.
    R. Zhao, C. Yin, H. Zhao, C. Liu, Effects of modified Co-Mo catalysts for FCC gasoline HDS on catalytic activity. Pet. Sci. Technol. 22, 1455–1463 (2004).  https://doi.org/10.1081/LPET-200027756CrossRefGoogle Scholar
  40. 40.
    J.T. Miller, W.J. Reagan, J.A. Kaduk, C.L. Marshall, A.J. Kropf, Selective hydrodesulfurization of FCC naphtha with supported MoS2 catalysts: the role of cobalt. J. Catal. 193, 123–131 (2000).  https://doi.org/10.1006/jcat.2000.2873CrossRefGoogle Scholar
  41. 41.
    C. Sudhakar, Selective hydrodesulfurization of cracked naphtha using hydrotalcite-supported catalysts, Patent 5,851,382, 1998Google Scholar
  42. 42.
    F. Trejo, M. Rana, J. Ancheyta, CoMo/MgO–Al2O3 supported catalysts: an alternative approach to prepare HDS catalysts. Catal. Today 130, 327–336 (2008).  https://doi.org/10.1016/j.cattod.2007.10.105CrossRefGoogle Scholar
  43. 43.
    P. Nikulshin, D. Ishutenko, Y. Anashkin, A. Mozhaev, A. Pimerzin, Selective hydrotreating of FCC gasoline over KCoMoP/Al2O3 catalysts prepared with H3PMo12O40: Effect of metal loading. Fuel 182, 632–639 (2016).  https://doi.org/10.1016/j.fuel.2016.06.016CrossRefGoogle Scholar
  44. 44.
    D. Ishutenko, P. Nikulshin, A. Pimerzin, Relation between composition and morphology of K(Co)MoS active phase species and their performances in hydrotreating of model FCC gasoline. Catal. Today 271, 16–27 (2016).  https://doi.org/10.1016/j.cattod.2015.11.025CrossRefGoogle Scholar
  45. 45.
    D.D. Whitehurst, T. Isoda, I. Mochida, Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds. Adv. Catal. 42, 345–471 (1998).  https://doi.org/10.1016/S0360-0564(08)60631-8CrossRefGoogle Scholar
  46. 46.
    J.A.R. van Veen, E. Gerkema, A.M. van der Kraan, P.A.J.M. Hendriks, H. Beens, A 57Co Mössbauer emission spectrometric study of some supported CoMo hydrodesulfurization catalysts. J. Catal. 133, 112–123 (1992).  https://doi.org/10.1016/0021-9517(92)90189-OCrossRefGoogle Scholar
  47. 47.
    R. Cattaneo, F. Rota, R. Prins, An XAFS study of the different influence of chelating ligands on the HDN and HDS of γ-Al2O3-supported NiMo catalysts. J. Catal. 199, 318–327 (2001).  https://doi.org/10.1006/jcat.2001.3170CrossRefGoogle Scholar
  48. 48.
    A.J. van Dillen, R.J.A.M. Terörde, D.J. Lensveld, J.W. Geus, K.P. de Jong, Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J. Catal. 216, 257–264 (2003).  https://doi.org/10.1016/S0021-9517(02)00130-6CrossRefGoogle Scholar
  49. 49.
    M. Sun, D. Nicosia, R. Prins, The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catal. Today 86, 173–189 (2003).  https://doi.org/10.1016/S0920-5861(03)00410-3CrossRefGoogle Scholar
  50. 50.
    G. Kishan, J.A.R. van Veen, J.W. Niemantsverdriet, Realistic surface science models of hydrodesulfurization catalysts on planar thin-film supports: the role of chelating agents in the preparation of CoW/SiO2 catalysts. Top. Catal. 29, 103–110 (2004).  https://doi.org/10.1023/B:TOCA.0000029792.45691.d4CrossRefGoogle Scholar
  51. 51.
    M.S. Rana, J. Ramírez, A. Gutiérrez-Alejandre, J. Ancheyta, L. Cedeño, S.K. Maity, Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent. J. Catal. 246, 100–108 (2007).  https://doi.org/10.1016/j.jcat.2006.11.025CrossRefGoogle Scholar
  52. 52.
    N. Frizi, P. Blanchard, E. Payen, P. Baranek, M. Reibeilleau, C. Dupuy, J.P. Dath, Genesis of new HDS catalysts through a careful control of the sulfidation of both Co and Mo atoms: Study of their activation under gas phase. Catal. Today 130, 272–282 (2008).  https://doi.org/10.1016/j.cattod.2007.10.109CrossRefGoogle Scholar
  53. 53.
    C. Wivel, R. Candia, B.S. Clausen, S. Mørup, H. Topsøe, On the catalytic significance of a Co-Mo-S phase in Co-Mo/Al2O3 hydrodesulfurization catalysts: combined in situ Mössbauer emission spectroscopy and activity studies. J. Catal. 68, 453–463 (1981).  https://doi.org/10.1016/0021-9517(81)90115-9CrossRefGoogle Scholar
  54. 54.
    H. Topsøe, B.S. Clausen, R. Candia, C. Wivel, S. Mørup, In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: evidence for and nature of a Co-Mo-S phase. J. Catal. 68, 433–452 (1981).  https://doi.org/10.1016/0021-9517(81)90114-7CrossRefGoogle Scholar
  55. 55.
    N.-Y. Topsøe, H. Topsøe, Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorption. J. Catal. 84, 386–401 (1983).  https://doi.org/10.1016/0021-9517(83)90010-6CrossRefGoogle Scholar
  56. 56.
    P. Raybaud, Understanding and predicting improved sulfide catalysts: Insights from first principles modeling. Appl. Catal. A Gen. 322, 76–91 (2007).  https://doi.org/10.1016/j.apcata.2007.01.005CrossRefGoogle Scholar
  57. 57.
    J.V. Lauritsen, J. Kibsgaard, G.H. Olesen, P.G. Moses, B. Hinnemann, S. Helveg, J.K. Nørskov, B.S. Clausen, H. Topsøe, E. Lægsgaard, F. Besenbacher, Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 249, 220–233 (2007).  https://doi.org/10.1016/j.jcat.2007.04.013CrossRefGoogle Scholar
  58. 58.
    M.J. Ledoux, O. Michaux, G. Agostini, P. Panissod, CoMo sulfide catalysts studies by metal solid NMR: the question of the existence of the chemical synergy. J. Catal. 96, 189–201 (1985).  https://doi.org/10.1016/0021-9517(85)90372-0CrossRefGoogle Scholar
  59. 59.
    M.J. Ledoux, On the structure of cobalt sulfide catalysts. Catal. Lett. 1, 429–431 (1988).  https://doi.org/10.1007/BF00766202CrossRefGoogle Scholar
  60. 60.
    S.M.A.M. Bouwens, J.A.R. van Veen, D.C. Koningsberger, V.H.J. de Beer, R. Prins, Extended X-ray absorption fine structure determination of the structure of cobalt in carbon-supported Co and Co-Mo sulfide hydrodesulfurization catalysts. J. Phys. Chem. 95, 123–134 (1991).  https://doi.org/10.1021/j100154a028CrossRefGoogle Scholar
  61. 61.
    S.M.A.M. Bouwens, F.B.M. van Zon, M.P. van dijk, A.M. van der Kraan, V.H.J. de Beer, J.A.R. van Veen, D.C. Koningsberger, On the structural differences between alumina-supported CoMoS type I and alumina-, silica-, and carbon-supported CoMoS type ii phases studied by XAFS, MES, and XPS. J. Catal. 146, 375–393 (1994).  https://doi.org/10.1006/jcat.1994.1076CrossRefGoogle Scholar
  62. 62.
    J.T. Miller, C.L. Marshall, A.J. Kropf, (Co)MoS2/alumina hydrotreating catalysts: an EXAFS study of the chemisorption and partial oxidation with O2. J. Catal. 202, 89–99 (2001).  https://doi.org/10.1006/jcat.2001.3273CrossRefGoogle Scholar
  63. 63.
    M.W.J. Crajé, S.P.A. Louwers, V.H.J. de Beer, R. Prins, A.M. van der Kraan, E.X.A.F.S. An, Study on the So-Called “Co-Mo-S” phase in Co/C and Co-Mo/C, compared with a Mössbauer emission spectroscopy study. J. Phys. Chem. 96, 5445–5452 (1992).  https://doi.org/10.1021/j100192a048CrossRefGoogle Scholar
  64. 64.
    L. van Haandel, G.M. Bremmer, E.J.M. Hensen, T. Weber, The effect of organic additives and phosphoric acid on sulfidation and activity of (Co)Mo/Al2O3 hydrodesulfurization catalysts. J. Catal. 351, 95–106 (2017).  https://doi.org/10.1016/j.jcat.2017.04.012CrossRefGoogle Scholar
  65. 65.
    A. Travert, C. Dujardin, F. Maugé, E. Veilly, S. Cristol, J.F. Paul, E. Payen, CO adsorption on CoMo and NiMo sulfide catalysts: a combined IR and DFT study. J. Phys. Chem. B 110, 1261–1270 (2006).  https://doi.org/10.1021/jp0536549CrossRefGoogle Scholar
  66. 66.
    Y. Zhu, Q.M. Ramasse, M. Brorson, P.G. Moses, L.P. Hansen, C.F. Kisielowski, S. Helveg, Visualizing the stoichiometry of industrial-style Co-Mo-S catalysts with single-atom sensitivity. Angew. Chem. Int. Ed. Engl. 53, 10723–10727 (2014).  https://doi.org/10.1002/anie.201405690CrossRefGoogle Scholar
  67. 67.
    F. Maugé, J.C. Lavalley, FT-IR study of CO adsorption on sulfided Mo/Al2O3 unpromoted or promoted by metal carbonyls: titration of sites. J. Catal. 137, 69–76 (1992).  https://doi.org/10.1016/0021-9517(92)90139-9CrossRefGoogle Scholar
  68. 68.
    N.-Y. Topsøe, A. Tuxen, B. Hinnemann, J.V. Lauritsen, K.G. Knudsen, F. Besenbacher, H. Topsøe, Spectroscopy, microscopy and theoretical study of NO adsorption on MoS2 and Co–Mo–S hydrotreating catalysts. J. Catal. 279, 337–351 (2011).  https://doi.org/10.1016/j.jcat.2011.02.002CrossRefGoogle Scholar
  69. 69.
    J. Ramirez, P. Castillo, L. Cedeño, R. Cuevas, M. Castillo, J.M. Palacios, A. López-Agudo, Effect of boron addition on the activity and selectivity of hydrotreating CoMo/Al2O3 catalysts. Appl. Catal. A Gen. 132, 317–334 (1995).  https://doi.org/10.1016/0926-860X(95)00166-2CrossRefGoogle Scholar
  70. 70.
    A. Romero-Galarza, A. Gutiérrez-Alejandre, J. Ramírez, Analysis of the promotion of CoMoP/Al2O3 HDS catalysts prepared from a reduced H–P–Mo heteropolyacid Co salt. J. Catal. 280, 230–238 (2011).  https://doi.org/10.1016/j.jcat.2011.03.021CrossRefGoogle Scholar
  71. 71.
    H. Topsøe, R. Candia, N.-Y. Topsøe, B.S. Clausen, On the state of the Co-Mo-S Model. Bull. Des Sociétés Chim. Belges. 93, 783–806 (1984).  https://doi.org/10.1002/bscb.19840930820CrossRefGoogle Scholar
  72. 72.
    J.B. Peri, Computerized infrared studies of Mo/Al2O3 and Mo/SiO2 catalysts. J. Phys. Chem. 86, 1615–1622 (1982).  https://doi.org/10.1021/j100206a028CrossRefGoogle Scholar
  73. 73.
    J. Bachelier, M. Tilliette, M. Cornac, J.C. Duchet, J.C. Lavalley, D. Cornet, Sulfided Co-Mo/Al2O3 catalysts: carbon monoxide chemisorption and surface structures. Bull. Soc. Chim. Belg. 93, 743–750 (1984).  https://doi.org/10.1002/bscb.19840930816CrossRefGoogle Scholar
  74. 74.
    B. Müller, A.D. van Langeveld, J.A. Moulijn, H. Knözinger, Characterization of sulfided Mo/Al2O3 catalysts by temperature-programmed reduction and low-temperature Fourier transform infrared spectroscopy of adsorbed carbon monoxide. J. Phys. Chem. 97, 9028–9033 (1993).  https://doi.org/10.1021/j100137a031CrossRefGoogle Scholar
  75. 75.
    F. Maugé, A. Vallet, J. Bachelier, J.C. Duchet, J.C. Lavalley, Preparation, characterization, and activity of sulfided catalysts promoted by Co(CO)3NO thermodecomposition. J. Catal. 162, 88–95 (1996).  https://doi.org/10.1006/jcat.1996.0262CrossRefGoogle Scholar
  76. 76.
    P. Castillo-Villalón, J. Ramirez, R. Castañeda, Relationship between the hydrodesulfurization of thiophene, dibenzothiophene, and 4,6-dimethyl dibenzothiophene and the local structure of Co in Co-Mo-S sites: Infrared study of adsorbed CO. J. Catal. 294, 54–62 (2012).  https://doi.org/10.1016/j.jcat.2012.07.002CrossRefGoogle Scholar
  77. 77.
    M. Osawa, K.-I. Ataka, K. Yoshii, Y. Nishikawa, Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47, 1497–1502 (1993).  https://doi.org/10.1366/0003702934067478CrossRefGoogle Scholar
  78. 78.
    J. Fan, M. Trenary, Symmetry and the surface infrared selection rule for the determination of the structure of molecules on metal surfaces. Langmuir 10, 3649–3657 (1994).  https://doi.org/10.1021/la00022a044CrossRefGoogle Scholar
  79. 79.
    N. Sheppard, J. Erkelens, Vibrational spectra of species adsorbed on surfaces: forms of vibrations and selection rules for regular arrays of adsorbed species. Appl. Spectrosc. 38, 471–485 (1984).  https://doi.org/10.1366/0003702844555133CrossRefGoogle Scholar
  80. 80.
    R.G. Greenler, D.R. Snider, D. Witt, R.S. Sorbello, The metal-surface selection rule for infrared spectra of molecules adsorbed on small metal particles. Surf. Sci. 118, 415–428 (1982).  https://doi.org/10.1016/0039-6028(82)90197-2CrossRefGoogle Scholar
  81. 81.
    S.F.A. Kettle, The metal surface selection rule: its extension to transition metal carbonyl clusters. Spectrochim. Acta A Mol. Biomol. Spectrosc. 54, 1639–1643 (1998).  https://doi.org/10.1016/S1386-1425(98)00091-2CrossRefGoogle Scholar
  82. 82.
    Y. Nishikawa, K. Fujiwara, T. Shima, A study of the qualitative and quantitative analysis of nanogram samples by transmission infrared spectroscopy with the use of Silver Island films. Appl. Spectrosc. 45, 747–751 (1991)CrossRefGoogle Scholar
  83. 83.
    M. Osawa, M. Ikeda, Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on Silver Island films: contributions of electromagnetic and chemical mechanisms. J. Phys. Chem. 95, 9914–9919 (1991).  https://doi.org/10.1021/j100177a056CrossRefGoogle Scholar
  84. 84.
    N. Rinaldi, T. Kubota, Y. Okamoto, Effect of citric acid addition on the hydrodesulfurization activity of MoO3/Al2O3 catalysts. Appl. Catal. A Gen. 374, 228–236 (2010).  https://doi.org/10.1016/j.apcata.2009.12.015CrossRefGoogle Scholar
  85. 85.
    N. Rinaldi, K.A.-D. Usman, T. Kubota, Y. Okamoto, Preparation of Co–Mo/B2O3/Al2O3 catalysts for hydrodesulfurization: effect of citric acid addition. Appl. Catal. A Gen. 360, 130–136 (2009).  https://doi.org/10.1016/j.apcata.2009.03.006CrossRefGoogle Scholar
  86. 86.
    P. Castillo-Villalón, J. Ramirez, J.A. Vargas-Luciano, Analysis of the role of citric acid in the preparation of highly active HDS catalysts. J. Catal. 320, 127–136 (2014).  https://doi.org/10.1016/j.jcat.2014.09.021CrossRefGoogle Scholar
  87. 87.
    P. Afanasiev, On the interpretation of temperature programmed reduction patterns of transition metals sulphides. Appl. Catal. A Gen. 303, 110–115 (2006).  https://doi.org/10.1016/j.apcata.2006.02.014CrossRefGoogle Scholar
  88. 88.
    F. Bataille, J.-L. Lemberton, P. Michaud, G. Pérot, M. Vrinat, M. Lemaire, E. Schulz, M. Breysse, S. Kasztelan, Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism. J. Catal. 191, 409–422 (2000).  https://doi.org/10.1006/jcat.1999.2790CrossRefGoogle Scholar
  89. 89.
    P. Nikulshin, A. Mozhaev, C. Lancelot, P. Blanchard, E. Payen, C. Lamonier, Hydroprocessing catalysts based on transition metal sulfides prepared from Anderson and dimeric Co2Mo10-heteropolyanions. a review. C. R. Chim. 19, 1276–1285 (2016).  https://doi.org/10.1016/j.crci.2015.10.006CrossRefGoogle Scholar
  90. 90.
    J. Liang, M. Wu, P. Wei, J. Zhao, H. Huang, C. Li, Y. Lu, Y. Liu, C. Liu, Efficient hydrodesulfurization catalysts derived from Strandberg P–Mo–Ni polyoxometalates. J. Catal. 358, 155–167 (2018).  https://doi.org/10.1016/j.jcat.2017.11.026CrossRefGoogle Scholar
  91. 91.
    N. Al-zaqri, A. Alsalme, S.F. Adil, A. Alsaleh, S.G. Alshammari, S.I. Alresayes, R. Alotaibi, M. Al-Kinany, M.R.H. Siddiqui, Comparative catalytic evaluation of nickel and cobalt substituted phosphomolybdic acid catalyst supported on silica for hydrodesulfurization of thiophene. J. Saudi Chem. Soc. 21, 965–973 (2017).  https://doi.org/10.1016/j.jscs.2017.05.004CrossRefGoogle Scholar
  92. 92.
    A. Griboval, P. Blanchard, E. Payen, M. Fournier, J.L. Dubois, Alumina supported HDS catalysts prepared by impregnation with new heteropolycompounds. Comparison with catalysts prepared by conventional Co–Mo–P coimpregnation. Catal. Today 45, 277–283 (1998).  https://doi.org/10.1016/S0920-5861(98)00230-2CrossRefGoogle Scholar
  93. 93.
    A. Pimerzin, A. Mozhaev, A. Varakin, K. Maslakov, P. Nikulshin, Comparison of citric acid and glycol effects on the state of active phase species and catalytic properties of CoPMo/Al2O3 hydrotreating catalysts. Appl. Catal. B Environ. 205, 93–103 (2017).  https://doi.org/10.1016/j.apcatb.2016.12.022CrossRefGoogle Scholar
  94. 94.
    B. Pawelec, S. Damyanova, R. Mariscal, J.L.G. Fierro, I. Sobrados, J. Sanz, L. Petrov, HDS of dibenzothiophene over polyphosphates supported on mesoporous silica. J. Catal. 223, 86–97 (2004).  https://doi.org/10.1016/j.jcat.2004.01.018CrossRefGoogle Scholar
  95. 95.
    P.A. Nikulshin, A.V. Mozhaev, A.A. Pimerzin, V.V. Konovalov, A.A. Pimerzin, CoMo/Al2O3 catalysts prepared on the basis of Co2Mo10-heteropolyacid and cobalt citrate: effect of Co/Mo ratio. Fuel 100, 24–33 (2012).  https://doi.org/10.1016/j.fuel.2011.11.028CrossRefGoogle Scholar
  96. 96.
    J. Ramírez, A. Gutiérrez-Alejandre, F. Sánchez-Minero, V. MacÍas-Alcántara, P. Castillo-Villalón, L. Oliviero, F. Maugé, HDS of 4,6-DMDBT over NiMoP/(x)Ti-SBA-15 catalysts prepared with H3PMo12O40. Energy Fuel 26, 773–782 (2012).  https://doi.org/10.1021/ef201590gCrossRefGoogle Scholar
  97. 97.
    C.I. Cabello, F.M. Cabrerizo, A. Alvarez, H.J. Thomas, Decamolybdodicobaltate(iii) heteropolyanion: structural, spectroscopical, thermal and hydrotreating catalytic properties. J. Mol. Catal. A Chem. 186, 89–100 (2002).  https://doi.org/10.1016/S1381-1169(02)00043-2CrossRefGoogle Scholar
  98. 98.
    S. Damyanova, J.L.G. Fierro, Structural features and thermal stability of titania-supported 12-molybdophosphoric heteropoly compounds. Chem. Mater. 10, 871–879 (1998).  https://doi.org/10.1021/cm970639aCrossRefGoogle Scholar
  99. 99.
    L.R. Pizzio, P.G. Vázquez, C.V. Cáceres, M.N. Blanco, Supported Keggin type heteropolycompounds for ecofriendly reactions. Appl. Catal. A Gen. 256, 125–139 (2003).  https://doi.org/10.1016/S0926-860X(03)00394-6CrossRefGoogle Scholar
  100. 100.
    L. Lizama, T. Klimova, Highly active deep HDS catalysts prepared using Mo and W heteropolyacids supported on SBA-15. Appl. Catal. B Environ. 82, 139–150 (2008).  https://doi.org/10.1016/j.apcatb.2008.01.018CrossRefGoogle Scholar
  101. 101.
    A. Griboval, P. Blanchard, L. Gengembre, E. Payen, M. Fournier, J.L. Dubois, J.R. Bernard, Hydrotreatment catalysts prepared with heteropolycompound: characterisation of the oxidic precursors. J. Catal. 188, 102–110 (1999).  https://doi.org/10.1006/jcat.1999.2633CrossRefGoogle Scholar
  102. 102.
    Y. Okamoto, A. Kato, N.R. Usman, T. Fujikawa, H. Koshika, I. Hiromitsu, T. Kubota, Effect of sulfidation temperature on the intrinsic activity of Co–MoS2 and Co–WS2 hydrodesulfurization catalysts. J. Catal. 265, 216–228 (2009).  https://doi.org/10.1016/j.jcat.2009.05.003CrossRefGoogle Scholar
  103. 103.
    Y. Gochi, C. Ornelas, F. Paraguay, S. Fuentes, L. Alvarez, J.L. Rico, G. Alonso-Núñez, Effect of sulfidation on Mo-W-Ni trimetallic catalysts in the HDS of DBT. Catal. Today 107–108, 531–536 (2005).  https://doi.org/10.1016/j.cattod.2005.07.068CrossRefGoogle Scholar
  104. 104.
    B.M. Vogelaar, N. Kagami, T.F. van der Zijden, A.D. van Langeveld, S. Eijsbouts, J.A. Moulijn, Relation between sulfur coordination of active sites and HDS activity for Mo and NiMo catalysts. J. Mol. Catal. A Chem. 309, 79–88 (2009).  https://doi.org/10.1016/j.molcata.2009.04.018CrossRefGoogle Scholar
  105. 105.
    V.P. Fedin, J. Czyzniewska, R. Prins, T. Weber, Supported molybdenum–sulfur cluster compounds as precursors for HDS catalysts. Appl. Catal. A Gen. 213, 123–132 (2001).  https://doi.org/10.1016/S0926-860X(00)00894-2CrossRefGoogle Scholar
  106. 106.
    W. Qian, A. Ishihara, Y. Aoyama, T. Kabe, Sulfidation of nickel- and cobalt-promoted molybdenum–alumina catalysts using a radioisotope 35S-labeled H2S pulse tracer method. Appl. Catal. A Gen. 196, 103–110 (2000).  https://doi.org/10.1016/S0926-860X(99)00454-8CrossRefGoogle Scholar
  107. 107.
    C. Geantet, J.-M.M. Millet, Design of Heterogeneous Catalysts, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).  https://doi.org/10.1002/9783527625321CrossRefGoogle Scholar
  108. 108.
    M. Tang, H. Ge, W. Fan, G. Wang, Z. Lyu, X. Li, Presulfidation and activation mechanism of Mo/Al2O3 catalyst sulfided by ammonium thiosulfate. Korean J. Chem. Eng. 31, 1368–1376 (2014).  https://doi.org/10.1007/s11814-014-0053-zCrossRefGoogle Scholar
  109. 109.
    T.C. Ho, S.C. Reyes, Design of catalyst sulfiding procedures. Chem. Eng. Sci. 45, 2633–2638 (1990).  https://doi.org/10.1016/0009-2509(90)80152-5CrossRefGoogle Scholar
  110. 110.
    P. Arnoldy, J.A.M. van den Heijkant, G.D. de Bok, J.A. Moulijn, Temperature-programmed sulfiding of MoO3/Al2O3 catalysts. J. Catal. 92, 35–55 (1985).  https://doi.org/10.1016/0021-9517(85)90235-0CrossRefGoogle Scholar
  111. 111.
    T. Weber, J.C. Muijsers, J.H.M.C. van Wolput, C.P.J. Verhagen, J.W. Niemantsverdriet, Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2 , as studied by X-ray photoelectron and infrared emission spectroscopy. J. Phys. Chem. 100, 14144–14150 (1996).  https://doi.org/10.1021/jp961204yCrossRefGoogle Scholar
  112. 112.
    C. Bara, A.-F. Lamic-Humblot, E. Fonda, A.-S. Gay, A.-L. Taleb, E. Devers, M. Digne, G.D. Pirngruber, X. Carrier, Surface-dependent sulfidation and orientation of MoS2 slabs on alumina-supported model hydrodesulfurization catalysts. J. Catal. 344, 591–605 (2016).  https://doi.org/10.1016/j.jcat.2016.10.001CrossRefGoogle Scholar
  113. 113.
    H. Farag, Effect of sulfidation temperatures on the bulk structures of various molybdenum precursors. Energy Fuel 16, 944–950 (2002).  https://doi.org/10.1021/ef0102972CrossRefGoogle Scholar
  114. 114.
    L. van Haandel, G.M. Bremmer, E.J.M. Hensen, T. Weber, Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts. J. Catal. 342, 27–39 (2016).  https://doi.org/10.1016/j.jcat.2016.07.009CrossRefGoogle Scholar
  115. 115.
    L. van Haandel, M. Bremmer, P.J. Kooyman, J.A.R. van Veen, T. Weber, E.J.M. Hensen, Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1-x)S2/Al2O3 Catalysts. ACS Catal. 5, 7276–7287 (2015).  https://doi.org/10.1021/acscatal.5b01806CrossRefGoogle Scholar
  116. 116.
    A. Villarreal, J. Ramírez, L. Cedeño-Caero, P. Castillo-Villalón, A. Gutiérrez-Alejandre, Importance of the sulfidation step in the preparation of highly active NiMo/SiO2/Al2O3 hydrodesulfurization catalysts. Catal. Today 250, 60–65 (2015).  https://doi.org/10.1016/j.cattod.2014.03.035CrossRefGoogle Scholar
  117. 117.
    T. Kubota, N. Rinaldi, K. Okumura, T. Honma, S. Hirayama, Y. Okamoto, In situ XAFS study of the sulfidation of Co–Mo/B2O3/Al2O3 hydrodesulfurization catalysts prepared by using citric acid as a chelating agent. Appl. Catal. A Gen. 373, 214–221 (2010).  https://doi.org/10.1016/j.apcata.2009.11.023CrossRefGoogle Scholar
  118. 118.
    J. Escobar, M.C. Barrera, A.W. Gutiérrez, J.E. Terrazas, Benzothiophene hydrodesulfurization over NiMo/alumina catalysts modified by citric acid. Effect of addition stage of organic modifier. Fuel Process. Technol. 156, 33–42 (2017).  https://doi.org/10.1016/j.fuproc.2016.09.028CrossRefGoogle Scholar
  119. 119.
    L. van Haandel, E.J.M. Hensen, T. Weber, FT-IR study of NO adsorption on MoS2/Al2O3 hydrodesulfurization catalysts: effect of catalyst preparation. Catal. Today 292, 67–73 (2017).  https://doi.org/10.1016/j.cattod.2016.07.028CrossRefGoogle Scholar
  120. 120.
    A.V. Pashigreva, G.A. Bukhtiyarova, O.V. Klimov, G.S. Litvak, A.S. Noskov, Influence of the heat treatment conditions on the activity of the CoMo/Al2O3 catalyst for deep hydrodesulfurization of diesel fractions. Kinet. Catal. 49, 812–820 (2008).  https://doi.org/10.1134/S0023158408060062CrossRefGoogle Scholar
  121. 121.
    H. Li, M. Li, Y. Chu, F. Liu, H. Nie, Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts. Appl. Catal. A Gen. 403, 75–82 (2011).  https://doi.org/10.1016/j.apcata.2011.06.015CrossRefGoogle Scholar
  122. 122.
    E.J.M. Hensen, V.H.J. de Beer, J.A.R. van Veen, R.A. van Santen, A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts. Catal. Lett. 84, 59–67 (2002).  https://doi.org/10.1023/A:1021024617582CrossRefGoogle Scholar
  123. 123.
    P. Blanchard, C. Lamonier, A. Griboval, E. Payen, New insight in the preparation of alumina supported hydrotreatment oxidic precursors: a molecular approach. Appl. Catal. A Gen. 322, 33–45 (2007).  https://doi.org/10.1016/j.apcata.2007.01.018CrossRefGoogle Scholar
  124. 124.
    L. Bing, A. Tian, J. Li, K. Yi, F. Wang, C. Wu, G. Wang, The effects of chelating agents on CoMo/TiO2–Al2O3 hydrodesulfurization catalysts. Catal. Lett. 148, 1309–1314 (2018).  https://doi.org/10.1007/s10562-018-2331-6CrossRefGoogle Scholar
  125. 125.
    Y. Zhang, W. Han, X. Long, H. Nie, Redispersion effects of citric acid on CoMo/γ-Al2O3 hydrodesulfurization catalysts. Catal. Commun. 82, 20–23 (2016).  https://doi.org/10.1016/j.catcom.2016.04.012CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jorge Ramírez
    • 1
    Email author
  • Perla Castillo-Villalón
    • 1
  • Aída Gutiérrez-Alejandre
    • 1
  • Rogelio Cuevas
    • 1
  • Aline Villarreal
    • 1
  1. 1.UNICAT, Departamento de Ingeniería Química, Facultad de QuímicaUNAMCDMXMexico

Personalised recommendations