Advertisement

Integrated Gas-Electric System

  • Wei Wei
  • Jianhui Wang
Chapter

Abstract

During the past decades, the environmental policy, public awareness of sustainable development, as well as technology breakthroughs in shale gas production have led to the upsurge of natural gas usage in electricity industry. The growing reliance of natural gas in electricity generation has brought the increasing level of interdependence between two capital energy sectors. Understanding the interactions in the gas and electricity supply chain is crucially important for government authorities, system designers, operators, and related stakeholders who are jointly responsible for the overall energy policy and system security. This chapter endeavours to establish a holistic modeling framework and analytical tool to address the planning, operation, and marketization issues of the interdependent natural gas and electric power infrastructure. In particular, the mathematical formulation of the gas flow in pipeline network will be introduced; the optimal gas-power flow problem will be addressed via convex optimization and ADMM method; locational marginal energy prices based bilateral gas-electricity market and strategic bidding problems of market participants will be modeled and analyzed as equilibrium problems; finally, reinforcing vulnerable components to improve system resilience under malicious attacks will be addressed via robust optimization.

Keywords

Natural gas network Interdependence Optimal energy flow Market Locational marginal price Robust optimization Equilibrium problem Vulnerability 

References

  1. 1.
    Rognerud, E.: The impact of the shale gas revolution. Technical Report. Available at: http://www.wgei.org/wp-content/uploads/2015/11/The-shale-gas-revolution_Eli-W-Rognerud-Aug-2015.pdf
  2. 2.
    Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G.: Coordinated scheduling for interdependent electric power and natural gas infrastructures. IEEE Trans. Power Syst. 32(1), 600–610 (2017)CrossRefGoogle Scholar
  3. 3.
    International Energy Agency: World Balance. From http://www.iea.org/sankey/#?c=IEATotal&s=Balance. Retrieved 5 July 2017
  4. 4.
    BBC News: China claims breakthrough in mining flammable ice. http://www.bbc.com/news/world-asia-china-39971667
  5. 5.
    Tsai, K., Upchurch, J.: Natural gas prices in 2016 were the lowest in nearly 20 years. https://www.eia.gov/todayinenergy/detail.php?id=29552
  6. 6.
  7. 7.
    Shahidehpour, M., Fu, Y., Wiedman, T.: Impact of natural gas infrastructure on electric power systems. Proc. IEEE 93(5), 1042–1056 (2005)CrossRefGoogle Scholar
  8. 8.
    Portante, E., Kavicky, J., Craig, B., Talaber, L., Folga, S.: Modeling electric power and natural gas system interdependencies. J. Infrastruct. Syst. 23(4), 04017035 (2017)CrossRefGoogle Scholar
  9. 9.
    Rubio, R., Ojeda-Esteybar, D., Ano, O., Vargas, A.: Integrated natural gas and electricity market: a survey of the state of the art in operation planning and market issues. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, pp. 1–8 (2008)Google Scholar
  10. 10.
    Chertkov, M., Backhaus, S., Lebedev, V.: Cascading of fluctuations in interdependent energy infrastructures: gas-grid coupling. Appl. Energy 160, 541–551 (2015)CrossRefGoogle Scholar
  11. 11.
    Melaina, M.W., Antonia, O., Penev, M.: Blending hydrogen into natural gas pipeline networks: a review of key issues. Technical Report. NREL/TP-5600–51995 (2013)Google Scholar
  12. 12.
    Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert, R., Kolb, T.: Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390 (2016)CrossRefGoogle Scholar
  13. 13.
    Clegg, S., Mancarella, P.: Integrated electrical and gas network flexibility assessment in low-carbon multi-energy systems. IEEE Trans. Sustain. Energy 7(2), 718–731 (2016)CrossRefGoogle Scholar
  14. 14.
    Wang, C., Wei, W., Wang, J., et al. Convex optimization based distributed optimal gas-power flow calculation. IEEE Trans. Sustain. Energy 9(3), 1145–1156 (2018)CrossRefGoogle Scholar
  15. 15.
    Wang, C., Wei, W., Wang, J., Wu, L.: Equilibrium of interdependent gas and electricity markets with marginal price based bilateral energy trading. IEEE Trans. Power Syst. 33(5), 4854–4867 (2018)CrossRefGoogle Scholar
  16. 16.
    Wang, C., Wei, W., Wang, J., Liu, F., Mei, S.: Strategic offering and equilibrium in coupled gas and electricity markets. IEEE Trans. Power Syst. 33(1), 290–306 (2018)CrossRefGoogle Scholar
  17. 17.
    Wang, C., Wei, W., Wang, J., Liu, F., Qiu, F., Correa-Posada, C., Mei, S.: Robust defense strategy for gas-electric systems against malicious attacks. IEEE Trans. Power Syst. 32(4), 2953–2965 (2017)CrossRefGoogle Scholar
  18. 18.
    An, S. Natural gas and electricity optimal power flow. Doctoral Dissertation, Oklahoma State University (2004)Google Scholar
  19. 19.
    Ríos-Mercado, R.Z., Borraz-Sánchez, C.: Optimization problems in natural gas transportation systems: a state-of-the-art review. Appl. Energy 147, 536–555 (2015)CrossRefGoogle Scholar
  20. 20.
    Ríos-Mercado, R.Z., Wu, S., Scott, L.R., Boyd, E.A.: A reduction technique for natural gas transmission network optimization problems. Ann. Oper. Res. 117, 217–234 (2002)zbMATHCrossRefGoogle Scholar
  21. 21.
    Osiadacz, A.: Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston (1987)zbMATHGoogle Scholar
  22. 22.
    Thorley, A., Tiley, C.: Unsteady and transient flow of compressible fluids in pipelines: a review of theoretical and some experimental studies. Int. J. Heat Fluid Flow 8(1), 3–15 (1987)CrossRefGoogle Scholar
  23. 23.
    Herty, M., Mohring, J., Sachers, V.: A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33(7), 845–855 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Chaudry, M., Jenkins, N., Strbac, G.: Multi-time period combined gas and electricity network optimisation. Electr. Power Syst. Res. 78(7), 1265–1279 (2008)CrossRefGoogle Scholar
  25. 25.
    Liu, C., Shahidehpour, M., Wang, J.: Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow. Chaos: Interdiscipl. J. Nonlinear Sci. 21(2), 1–12 (2011)CrossRefGoogle Scholar
  26. 26.
    Keyaerts, N.: Gas balancing and line-pack flexibility: concepts and methodologies for organizing and regulating gas balancing in liberalized and integrated EU gas markets. Technical Report. D/2012/7515/101 (2012)Google Scholar
  27. 27.
    Correa-Posada, C.M., Sanchez-Martin, P.: Integrated power and natural gas model for energy adequacy in short-term operation. IEEE Trans. Power Syst. 30(6), 3347–3355 (2015)CrossRefGoogle Scholar
  28. 28.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)zbMATHCrossRefGoogle Scholar
  29. 29.
    Ghadimi, E., Teixeira, A., Shames, I., Johansson, M.: Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems. IEEE Trans. Autom. Control 60(3), 644–658 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Lipp, T., Boyd, S.: Variations and extension of the convex-concave procedure. Optim. Eng. 17(2), 263–287 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
  32. 32.
    Borraz-Sánchez, C., Bent, R., Backhaus, S., Hijazi, H., Van Hentenryck, P.: Convex relaxations for gas expansion planning. INFORMS J. Comput. 28(4), 645–656 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    He, C., Wu, L., Liu, T., Shahidehpour, M.: Robust co-optimization scheduling of electricity and natural gas systems via ADMM. IEEE Trans. Sustain. Energy 8(2), 658–670 (2017)CrossRefGoogle Scholar
  34. 34.
    Lavaei, J., Tse, D., Zhang, B.: Geometry of power flows and optimization in distribution networks. IEEE Trans. Power Syst. 29(2), 572–583 (2014)CrossRefGoogle Scholar
  35. 35.
    Zhang, B. Tse, D.: Geometry of injection regions of power networks. IEEE Trans. Power Syst. 28(2), 788–797 (2013)CrossRefGoogle Scholar
  36. 36.
    Li, F.: Continuous locational marginal pricing. IEEE Trans. Power Syst. 22(4), 1638–1646 (2007)CrossRefGoogle Scholar
  37. 37.
    Overview of natural gas: natural gas marketing. Available at http://naturalgas.org/naturalgas/marketing/
  38. 38.
    Natural gas and electricity market coordination issues. PJM Learning Center. Available at https://learn.pjm.com/three-priorities/keeping-the-lights-on/gas-electric-industry/natural-gas-electric-market.aspx
  39. 39.
    International Energy Agency: World energy look 2013. Paris (2013)Google Scholar
  40. 40.
    Gabriel, S., Smeers, Y.: Complementarity Problems in Restructured Natural Gas Markets. Springer, Berlin (2006)zbMATHCrossRefGoogle Scholar
  41. 41.
    Gil, M., Dueńas, P., Reneses, J.: Electricity and natural gas interdependency: comparison of two methodologies for coupling large market models within the European regulatory framework. IEEE Trans. Power Syst. 31(1), 361–369 (2016)CrossRefGoogle Scholar
  42. 42.
    Wolf, D., Smeers, Y.: The gas transmission problem solved by an extension of the simplex algorithm. Manage. Sci. 46(11), 1454–1465 (2000)zbMATHCrossRefGoogle Scholar
  43. 43.
    Leyffer, S., Munson, T.: Solving multi-leader-common-follower games. Optim. Methods Softw. 25(4), 601–623 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Ye, H., Li, Z.: Necessary conditions of line congestions in uncertainty accommodation. IEEE Trans. Power Syst. 31(5), 4165–4166 (2016)CrossRefGoogle Scholar
  45. 45.
    Ardakani, A.J., Bouffard, F.: Identification of umbrella constraints in DC-based security-constrained optimal power flow. IEEE Trans. Power Syst. 28(4), 3924–3934 (2013)CrossRefGoogle Scholar
  46. 46.
    Ardakani, A.J., Bouffard, F.: Acceleration of umbrella constraint discovery in generation scheduling problems. IEEE Trans. Power Syst. 30(4), 2100–2109 (2015)CrossRefGoogle Scholar
  47. 47.
    Zhao, L., Zeng, B.: Vulnerability analysis of power grids with line switching. IEEE Trans. Power Syst. 28(3), 2727–2736 (2013)CrossRefGoogle Scholar
  48. 48.
    Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. 21(6), 11–25 (2001)CrossRefGoogle Scholar
  49. 49.
    Shahidehpour, M., Fu, Y., Wiedman, T.: Impact of natural gas infrastructure on electric power systems. Proc. IEEE 93(5), 1042–1056 (2005)CrossRefGoogle Scholar
  50. 50.
    Li, T., Eremia, M., Shahidehpour, M.: Interdependency of natural gas network and power system security. IEEE Trans. Power Syst. 23(4), 1817–1824 (2008)CrossRefGoogle Scholar
  51. 51.
    Osiadacz, A. Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston (1987)zbMATHGoogle Scholar
  52. 52.
    Liu, C., Shahidehpour, M., Wang, J.: Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow. Chaos 21(2), 025102 (2011)CrossRefGoogle Scholar
  53. 53.
    Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G.: Coordinated scheduling for interdependent electric power and natural gas infrastructures. IEEE Trans. Power Syst. 32(1), 600–610 (2017)CrossRefGoogle Scholar
  54. 54.
    Zhou, Y., Gu, C., Wu, H., Song Y.: An equivalent model of gas networks for dynamic analysis of gas-electricity systems. IEEE Trans. Power Syst. 32(6), 4255–4264 (2017)CrossRefGoogle Scholar
  55. 55.
    Yang, J., Zhang, N., Kang, C., Xia, Q.: Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty. IEEE Trans. Power Syst. 33(2), 2087–2097 (2018)CrossRefGoogle Scholar
  56. 56.
    Chaczykowski, M.: Transient flow in natural gas pipeline-The effect of pipeline thermal model. Appl. Math. Model. 34(4), 1051–1067 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Abbaspour, M., Chapman, K.: Nonisothermal transient flow in natural gas pipeline. J. Appl. Mech. 75(3), 031018 (2008)CrossRefGoogle Scholar
  58. 58.
    Xu, X., Jia, H., Chiang, H., Wang, D.: Dynamic modeling and interaction of hybrid natural gas and electricity supply system in microgrid. IEEE Trans. Power Syst. 30(3), 1212–1221 (2015)CrossRefGoogle Scholar
  59. 59.
    Steinbach, M.: On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203(2), 345–361 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Ehrhardt, K., Steinbach, M.: Nonlinear optimization in gas networks. In Modeling, Simulation and Optimization of Complex Processes, pp. 139–148. Springer, Berlin (2005)Google Scholar
  61. 61.
    Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105(2–3), 563–582 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Correa-Posada, C., Sánchez-Martin, P.: Security-constrained optimal power and natural-gas flow. IEEE Trans. Power Syst. 29(4), 1780–1787 (2014)CrossRefGoogle Scholar
  63. 63.
    Correa-Posada, C., Sanchez-Martin, P., Lumbreras, S.: Security-constrained model for integrated power and natural-gas system. J. Mod. Power Syst. Clean Energy 5(3), 326–336 (2017)CrossRefGoogle Scholar
  64. 64.
    Correa-Posada, C., Sánchez-Martin, P.: Integrated power and natural gas model for energy adequacy in short-term operation. IEEE Trans. Power Syst. 30(6), 3347–3355 (2015)CrossRefGoogle Scholar
  65. 65.
    Domschke, P., Geißler, B., Kolb, O., Lang, J., Martin, A., Morsi, A.: Combination of nonlinear and linear optimization of transient gas networks. INFORMS J. Comput. 23(4), 605–617 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Correa-Posada, C., Sánchez-Martin, P.: Gas network optimization: a comparison of piecewise linear models. Technical Report. Available in Optimization Online (2014)Google Scholar
  67. 67.
    Babonneau, F., Nesterov, Y., Vial, J.: Design and operations of gas transmission networks. Oper. Res. 60(1), 34–47 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Sanchez, C., Bent, R., Backhaus, S., Blumsack, S., Hijazi, H., Van Hentenryck, P.: Convex optimization for joint expansion planning of natural gas and power systems. In Proceedings of the 49th Hawaii International Conference on System Sciences, pp. 2536–2545 (2016)Google Scholar
  69. 69.
    Ojha, A., Kekatos, V., Baldick, R. Solving the natural gas flow problem using semidefinite program relaxation. In Proceedings of the IEEE Power and Energy Society General Meeting, Chicago (2016)Google Scholar
  70. 70.
    Misra, S., Fisher, M., Backhaus, S., Bent, R., Chertkov, M., Pan, F.: Optimal compression in natural gas networks: a geometric programming approach. IEEE Trans. Control Netw. Syst. 2(1), 47–56 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Alabdulwahab, A., Abusorrah, A., Zhang, X., Shahidehpour, M.: Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling. IEEE Trans. Sustain. Energy 6(2), 606–615 (2015)CrossRefGoogle Scholar
  72. 72.
    Zhang, X., Che, L., Shahidehpour, M., Alabdulwahab, A., Abusorrah, A.: Electricity-natural gas operation planning with hourly demand response for deployment of flexible ramp. IEEE Trans. Sustain. Energy 7(3), 996–1004 (2016)CrossRefGoogle Scholar
  73. 73.
    Liu, C., Lee, C., Shahidehpour, M.: Look ahead robust scheduling of wind-thermal system with considering natural gas congestion. IEEE Trans. Power Syst. 30(1), 544–545 (2015)CrossRefGoogle Scholar
  74. 74.
    Martinez-Mares, A., Fuerte-Esquivel, C.: A robust optimization approach for the interdependency analysis of integrated energy systems considering wind power uncertainty. IEEE Trans. Power Syst. 28(4), 3964–3976 (2013)CrossRefGoogle Scholar
  75. 75.
    Bai, L., Li, F., Jiang, T., Jia, H.: Robust scheduling for wind integrated energy systems considering gas pipeline and power transmission N − 1 contingencies. IEEE Trans. Power Syst. 32(2), 1582–1584 (2017)Google Scholar
  76. 76.
    Li, G., Zhang, R., Jiang, T., Chen, H., Bai, L., Li, K.: Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process. Appl. Energy 194, 696–704 (2017)CrossRefGoogle Scholar
  77. 77.
    He, C., Wu, L., Liu, T., Shahidehpour, M.: Robust co-optimization scheduling of electricity and natural gas systems via ADMM. IEEE Trans. Sustain. Energy 8(2), 658–670 (2017)CrossRefGoogle Scholar
  78. 78.
    Wen, Y., Qu, X., Li, W., Liu, X., Ye, X.: Synergistic operation of electricity and natural gas networks via ADMM. IEEE Trans. Smart Grid 9(5), 4555–4565 (2017)CrossRefGoogle Scholar
  79. 79.
    Manshadi, S., Khodayar, M.: Resilient operation of multiple energy carrier microgrids. IEEE Trans. Smart Grid 6(5), 2283–2292 (2015)CrossRefGoogle Scholar
  80. 80.
    Unsihuay-Vila, C., Marangon-Lima, J., de Souza, A., Perez-Arriaga, I., Balestrassi, P.: A model to long-term, multiarea, multistage, and integrated expansion planning of electricity and natural gas systems. IEEE Trans. Power Syst. 25(2), 1154–1168 (2010)CrossRefGoogle Scholar
  81. 81.
    Unsihuay-Vila, C., Marangon-Lima J., de Souza, A.: Integrated power generation and natural gas expansion planning. In Proceedings IEEE Power Tech, pp. 1404–1409 (2007)Google Scholar
  82. 82.
    Zhang, X., Shahidehpour, M., Alabdulwahab, A., Abusorrah, A.: Security-constrained co-optimization planning of electricity and natural gas transportation infrastructures. IEEE Trans. Power Syst. 30(6), 2984–2993 (2015)CrossRefGoogle Scholar
  83. 83.
    Chaudry, M., Jenkins, N., Qadrdan, M., Wu, J.: Combined gas and electricity network expansion planning. Appl. Energy 113, 1171–1187 (2014)CrossRefGoogle Scholar
  84. 84.
    Ding, T., Hu, Y., Bie, Z.: Multi-stage stochastic programming with nonanticipativity constraints for expansion of combined power and natural gas systems. IEEE Trans. Power Syst. 33(1), 317–328 (2018)CrossRefGoogle Scholar
  85. 85.
    He, C., Wu, L., Liu, T., Bie, Z.: Robust co-optimization planning of interdependent electricity and natural gas systems with a joint N − 1 and probabilistic reliability criterion. IEEE Trans. Power Syst. 33(2), 2140–2154 (2018)CrossRefGoogle Scholar
  86. 86.
    Zhang, X., Shahidehpour, M., Alabdulwahab, A., Abusorrah, A.: Optimal expansion planning of energy hub with multiple energy infrastructures. IEEE Trans. Smart Grid 6(5), 2302–2311 (2015)CrossRefGoogle Scholar
  87. 87.
    Salimi, M., Ghasemi, H., Adelpour, M., Vaez-ZAdeh, S.: Optimal planning of energy hubs in interconnected energy systems: a case study for natural gas and electricity. IET Gener. Transm. Dis. 9(8), 695–707 (2015)CrossRefGoogle Scholar
  88. 88.
    Zhang, X., Che, L., Shahidehpour, M., Alabdulwahab, A., Abusorrah, A.: Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs. IEEE Trans. Smart Grid 8(4), 1658–1667 (2017)CrossRefGoogle Scholar
  89. 89.
    Egging, R., Gabriel, S., Holz, F., Zhuang, J.: A complementarity model for the European natural gas market. Energy Policy 36(7), 2385–2414 (2008)CrossRefGoogle Scholar
  90. 90.
    Gabriel, S., Zhuang, J., Kiet, S.: A large-scale linear complementarity model of the North American natural gas market. Energy Econ. 27(4), 639–665 (2005)CrossRefGoogle Scholar
  91. 91.
    Gil, M., Dueñas, P., Reneses, J.: Electricity and natural gas interdependency: Comparison of two methodologies for coupling large market models within the European regulatory framework. IEEE Trans. Power Syst. 31(1), 361–369 (2016)CrossRefGoogle Scholar
  92. 92.
    Abrell, J., Weigt, H.: Combining energy networks. Netw. Spat. Econ. 12(3), 377–401 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    He, C., Zhang, X., Liu, T., Wu, L., Shahidehpour, M.: Coordination of interdependent electricity grid and natural gas network-a review. Curr. Sustain. Renew. Energy Rep. 5(1), 23–36 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Wei Wei
    • 1
  • Jianhui Wang
    • 2
  1. 1.Department of Electrical EngineeringState Key Laboratory of Power SystemsBeijingChina
  2. 2.Department of Electrical and Computer EngineeringSouthern Methodist UniversityDallasUSA

Personalised recommendations