Advertisement

Variable Metric Algorithms Driven by Averaged Operators

  • Lilian E. GlaudinEmail author
Chapter

Abstract

The convergence of a new general variable metric algorithm based on compositions of averaged operators is established. Applications to monotone operator splitting are presented.

Keywords

Averaged operator Composite algorithm Convex optimization Fixed point iteration Monotone operator splitting Primal-dual algorithm Variable metric 

AMS 2010 Subject Classification

47H05 49M27 49M29 90C25 

Notes

Acknowledgements

The author thanks his Ph.D. advisor P. L. Combettes for his guidance during this work, which is part of his Ph.D. dissertation.

References

  1. 1.
    Alotaibi, A., Combettes, P.L., and Shahzad, N.: Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set. SIAM J. Optim. 24, 2076–2095 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Attouch, H., Briceño-Arias, L.M., and Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baillon, J.-B., Bruck, R.E., and Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups, Houston J. Math., 4, 1–9 (1978)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bauschke, H.H. and Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. 2nd ed. Springer, New York (2017)CrossRefGoogle Scholar
  5. 5.
    Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland/Elsevier, New York (1973)zbMATHGoogle Scholar
  6. 6.
    Briceño-Arias, L.M. and Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cegielski, A., Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, 2057. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Chambolle, A. and Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40, 120–145 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Combettes, P.L.: Monotoned operator theory in convex optimization. Math. Program. 170, 177–206 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Combettes, P.L. and Glaudin, L.E.: Quasi-nonexpansive iterations on the affine hull of orbits: from Mann’s mean value algorithm to inertial methods. SIAM J. Optim. 27, 2356–2380 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Combettes, P.L. and Müller, C.L.: Perspective functions: proximal calculus and applications in high-dimensional statistics. J. Math. Anal. Appl. 457, 1283–1306 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Combettes, P.L. and Pesquet, J.-C.: Proximal splitting methods in signal processing, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, 185–212. Springer, New York (2011)Google Scholar
  14. 14.
    Combettes, P.L. and Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Combettes, P.L. and Vũ, B.C: Variable metric quasi-Fejér monotonicity. Nonlinear Anal. 78, 17–31 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Combettes, P.L. and Vũ, B.C.: Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 63, 1289–1318 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting., Multiscale Model. Simul. 4, 1168–1200 (2005)Google Scholar
  18. 18.
    Combettes, P.L. and Yamada, I.: Compositions and convex combinations of averaged nonexpansive operators. J. Math. Anal. Appl. 425, 55–70 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Duchi, J. and Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Jenatton, R., Mairal, J., Obozinski, G., and Bach, F.: Proximal methods for hierarchical sparse coding. J. Mach. Learn. Res. 12, 2297–2334 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Peypouquet, J. and Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17, 1113–1163 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Salzo, S.: The variable metric forward-backward splitting algorithm under mild differentiability assumptions. SIAM J. Optim. 27, 2153–2181 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence, RI (1997)zbMATHGoogle Scholar
  24. 24.
    Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38, 667–681 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis LionsSorbonne UniversitéParisFrance

Personalised recommendations