Advertisement

Constraint Splitting and Projection Methods for Optimal Control of Double Integrator

  • Heinz H. Bauschke
  • Regina S. Burachik
  • C. Yalçın KayaEmail author
Chapter

Abstract

We consider the minimum-energy control of a car, which is modelled as a point mass sliding on the ground in a fixed direction, and so it can be mathematically described as the double integrator. The control variable, representing the acceleration or the deceleration, is constrained by simple bounds from above and below. Despite the simplicity of the problem, it is not possible to find an analytical solution to it because of the constrained control variable. To find a numerical solution to this problem we apply three different projection-type methods: (i) Dykstra’s algorithm, (ii) the Douglas–Rachford (DR) method and (iii) the Aragón Artacho–Campoy (AAC) algorithm. To the knowledge of the authors, these kinds of (projection) methods have not previously been applied to continuous-time optimal control problems, which are infinite-dimensional optimization problems. The problem we study in this article is posed in infinite-dimensional Hilbert spaces. Behaviour of the DR and AAC algorithms are explored via numerical experiments with respect to their parameters. An error analysis is also carried out numerically for a particular instance of the problem for each of the algorithms.

Keywords

Optimal control Dykstra projection method Douglas-Rachford method Aragón Artacho–Campoy algorithm Linear quadratic optimal control Control constraints Numerical methods 

AMS 2010 Subject Classification

49M27 65K10 90C20 

References

  1. 1.
    Alt, W., Kaya, C.Y., Schneider, C.: Dualization and discretization of linear-quadratic control problems with bang–bang solutions. EURO J. Comput. Optim. 4, 47–77 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alwadani, S., Bauschke, H.H., Moursi, W.M., Wang, X.: On the asymptotic behaviour of the Aragon Artacho-Campoy algorithm. Oper. Res. Letters 46 585–587 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aragón Artacho, F.J., Campoy, R.: A new projection method for finding the closest point in the intersection of convex sets. Comput. Optim. Appl. 69, 99–132 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aragón Artacho, F.J., Campoy, R.: Computing the resolvent of the sum of maximally monotone operators with the averaged alternating modified reflections algorithm. J. Optim. Th. Appl. 181, 709–726 (2019)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM Publications, Philadelphia (1995)CrossRefGoogle Scholar
  6. 6.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Second edition. Springer (2017)CrossRefGoogle Scholar
  7. 7.
    Bauschke, H.H., Koch, V.R.: Projection methods: Swiss Army knives for solving feasibility and best approximation problems with halfspaces. Infinite Products of Operators and Their Applications, 1–40 (2012)Google Scholar
  8. 8.
    Bauschke, H.H., Moursi, W.M.: On the order of the operators in the Douglas–Rachford algorithm. Optimization Letters 10, 447–455 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bauschke, H.H., Moursi, W.M.: On the Douglas–Rachford algorithm. Math. Program. (Ser. A) 164, 263–284 (2017)Google Scholar
  10. 10.
    Borwein, J.M., Sims, B.: The Douglas-Rachford Algorithm in the absence of convexity. In: Bauschke H., Burachik R., Combettes P., Elser V., Luke D., Wolkowicz H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications, vol 49, pp. 93–109. Springer, New York, NY (2011)Google Scholar
  11. 11.
    Boyle J.P., Dykstra R.L.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. In: Advances in Order Restricted Statistical Inference, vol. 37, Lecture Notes in Statistics, pp. 28–47. Springer (1986)Google Scholar
  12. 12.
    Burachik, R.S., Kaya, C.Y., Majeed, S.N.: A duality approach for solving control-constrained linear-quadratic optimal control problems. SIAM J. Control Optim. 52, 1771–1782 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Combettes, P.L.: A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Sig. Proc. 51, 2432–2442 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727–748 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comp. 70, 173–203 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bound for Euler approximation of a state and control constrained optimal control problem. Numer. Funct. Anal. Optim. 21, 653–682 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Prog. (Ser. A) 55, 293–318 (1992)Google Scholar
  19. 19.
    Eckstein, J., Ferris, M.C.: Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control. INFORMS J. Comput. 10, 218–235 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, Second Edition. Brooks/Cole Publishing Company / Cengage Learning (2003)Google Scholar
  21. 21.
    Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. John Wiley & Sons, New York (1966)zbMATHGoogle Scholar
  22. 22.
    Kaya, C.Y., Lucas, S.K. Simakov, S.T.: Computations for bang–bang constrained optimal control using a mathematical programming formulation. Optim. Contr. Appl. Meth. 25, 295–308 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kaya, C.Y., Noakes, J.L.: Computations and time-optimal controls, Opt. Cont. Appl. Meth. 17, 171–185 (1996)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kaya, C.Y., Noakes, J.L.: Computational algorithm for time-optimal switching control. J. Optim. Theory App. 117, 69–92 (2003)CrossRefGoogle Scholar
  25. 25.
    Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)MathSciNetCrossRefGoogle Scholar
  26. 26.
    O’Donoghue, B., Stathopoulos, G., Boyd, S.: A splitting method for optimal control. IEEE Trans. Contr. Sys. Tech. 21, 2432–2442 (2013)CrossRefGoogle Scholar
  27. 27.
    Rugh, W.J.: Linear System Theory, 2nd Edition. Pearson (1995)Google Scholar
  28. 28.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd Edition. Springer-Verlag, New York (1993)CrossRefGoogle Scholar
  29. 29.
    Svaiter, B.F.: On weak convergence of the Douglas-Rachford method. SIAM J. Control Optim. 49 , 280–287 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Prog. 106, 25–57 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Heinz H. Bauschke
    • 1
  • Regina S. Burachik
    • 2
  • C. Yalçın Kaya
    • 3
    Email author
  1. 1.Department of MathematicsUniversity of British ColumbiaKelownaCanada
  2. 2.School of IT & Mathematical SciencesUniversity of South AustraliaMawson LakesAustralia
  3. 3.School of Information Technology and Mathematical SciencesUniversity of South AustraliaMawson Lakes, AdelaideAustralia

Personalised recommendations