Advertisement

DAGS: Reloaded Revisiting Dyadic Key Encapsulation

  • Gustavo Banegas
  • Paulo S. L. M. Barreto
  • Brice Odilon Boidje
  • Pierre-Louis Cayrel
  • Gilbert Ndollane Dione
  • Kris Gaj
  • Cheikh Thiécoumba Gueye
  • Richard Haeussler
  • Jean Belo Klamti
  • Ousmane N’diaye
  • Duc Tri Nguyen
  • Edoardo PersichettiEmail author
  • Jefferson E. Ricardini
Conference paper
  • 191 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11666)

Abstract

In this paper we revisit some of the main aspects of the DAGS Key Encapsulation Mechanism, one of the code-based candidates to NIST’s standardization call for the key exchange/encryption functionalities. In particular, we modify the algorithms for key generation, encapsulation and decapsulation to fit an alternative KEM framework, and we present a new set of parameters that use binary codes. We discuss advantages and disadvantages for each of the variants proposed.

Keywords

Post-quantum cryptography Code-based cryptography Key exchange 

References

  1. 1.
    Banegas, G., et al.: DAGS: key encapsulation using dyadic GS codes. J. Math. Cryptol. 12, 221–239 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Banegas, G., Barreto, P.S.L.M., Persichetti, E., Santini, P.: Designing efficient dyadic operations for cryptographic applications. IACR Cryptology ePrint Archive 2018, p. 650 (2018)Google Scholar
  3. 3.
    Bardet, M., Bertin, M., Couvreur, A., Otmani, A.: Practical algebraic attack on DAGS. To appearGoogle Scholar
  4. 4.
    Barelli, É., Couvreur, A.: An efficient structural attack on NIST submission DAGS. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 93–118. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03326-2_4CrossRefGoogle Scholar
  5. 5.
    Bernstein, D.J., Persichetti, E.: Towards KEM unification. IACR Cryptology ePrint Archive 2018, p. 526 (2018)Google Scholar
  6. 6.
    Cayrel, P.-L., Hoffmann, G., Persichetti, E.: Efficient Implementation of a CCA2-Secure Variant of McEliece Using Generalized Srivastava Codes. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 138–155. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_9CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Faugere, J.-C., Otmani, A., Perret, L., De Portzamparc, F., Tillich, J.-P.: Structural cryptanalysis of McEliece schemes with compact keys. DCC 79(1), 87–112 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_14CrossRefGoogle Scholar
  11. 11.
    Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P:. Algebraic cryptanalysis of McEliece variants with compact keys - towards a complexity analysis. In: Proceedings of the 2nd International Conference on Symbolic Computation and Cryptography, SCC 2010, pp. 45–55. RHUL, June 2010CrossRefGoogle Scholar
  12. 12.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212–219, May 1996Google Scholar
  13. 13.
    Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_12CrossRefzbMATHGoogle Scholar
  14. 14.
  15. 15.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, Amsterdam (1977). North-Holland Mathematical LibraryzbMATHGoogle Scholar
  16. 16.
    Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05445-7_24CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Code. Cryptogr. 49(1–3), 289–305 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Persichetti, E.: Compact McEliece keys based on quasi-dyadic Srivastava codes. J. Math. Cryptol. 6(2), 149–169 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sarwate, D.: On the complexity of decoding Goppa codes. IEEE Trans. Inf. Theory 23(4), 515–516 (1977)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gustavo Banegas
    • 1
  • Paulo S. L. M. Barreto
    • 2
  • Brice Odilon Boidje
    • 3
  • Pierre-Louis Cayrel
    • 4
  • Gilbert Ndollane Dione
    • 3
  • Kris Gaj
    • 5
  • Cheikh Thiécoumba Gueye
    • 3
  • Richard Haeussler
    • 5
  • Jean Belo Klamti
    • 3
  • Ousmane N’diaye
    • 3
  • Duc Tri Nguyen
    • 5
  • Edoardo Persichetti
    • 6
    Email author
  • Jefferson E. Ricardini
    • 7
  1. 1.Tecnische Universiteit EindhovenEindhovenThe Netherlands
  2. 2.University of Washington TacomaTacomaUSA
  3. 3.Laboratoire d’Algebre, de Cryptographie, de Géométrie Algébrique et ApplicationsUniversité Cheikh Anta DiopDakarSenegal
  4. 4.Laboratoire Hubert CurienUniversité Jean MonnetSaint-EtienneFrance
  5. 5.George Mason UniversityFairfaxUSA
  6. 6.Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonUSA
  7. 7.Universidade de São PauloSão PauloBrazil

Personalised recommendations