Advertisement

Modeling Meaning Associated with Documental Entities: Introducing the Brussels Quantum Approach

  • Diederik Aerts
  • Massimiliano Sassoli de Bianchi
  • Sandro SozzoEmail author
  • Tomas Veloz
Chapter
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

We show that the Brussels operational-realistic approach to quantum physics and quantum cognition offers a fundamental strategy for modeling the meaning associated with collections of documental entities. To do so, we take the World Wide Web as a paradigmatic example and emphasize the importance of distinguishing the Web, made of printed documents, from a more abstract meaning entity, which we call the Quantum Web, or QWeb, where the former is considered to be the collection of traces that can be left by the latter, in specific measurements, similarly to how a non-spatial quantum entity, like an electron, can leave localized traces of impact on a detection screen. The double-slit experiment is extensively used to illustrate the rationale of the modeling, which is guided by how physicists constructed quantum theory to describe the behavior of the microscopic entities. We also emphasize that the superposition principle and the associated interference effects are not sufficient to model all experimental probabilistic data, like those obtained by counting the relative number of documents containing certain words and co-occurrences of words. For this, additional effects, like context effects, must also be taken into consideration.

Keywords

Quantum structures Conceptual entities Documental entities Interference effects Context effects Information Retrieval Word co-occurrence 

Notes

Acknowledgement

This work was supported by the Marie Skłodowska-Curie Innovative Training Network 721321—“QUARTZ.”

References

  1. 1.
    Aerts, D. (2005). Towards a new democracy: Consensus through quantum parliament. In D. Aerts, B. D’Hooghe & N. Note (Eds.), Worldviews, science and us, redemarcating knowledge and its social and ethical implications (pp. 189–202). Singapore: World Scientific.Google Scholar
  2. 2.
    Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53, 314–348.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aerts, D. (2011). Measuring meaning on the world-wide web. In D. Aerts, J. Broekaert, B. D’Hooghe & N. Note (Eds.), Worldviews, science and us: Bridging knowledge and its implications for our perspectives of the world (pp. 304–313). Singapore: World Scientific.CrossRefGoogle Scholar
  4. 4.
    Aerts, D., Argüelles, J., Beltran, L., Beltran, L., Geriente, S., Sassoli de Bianchi, M., et al. (2018). Towards a quantum world wide web. Theoretical Computer Science. https://doi.org/10.1016/j.tcs.2018.03.019 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aerts, D., Argüelles, J., Beltran, L., Beltran, L., Sassoli de Bianchi, M., Sozzo, S., et al. (2017). Testing quantum models of conjunction fallacy on the world wide web. International Journal of Theoretical Physics, 56, 3744–3756.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aerts, D., Argüelles, J., Beltran, L., Geriente, S., Sassoli de Bianchi, M., Sozzo, S., et al. (2018). Spin and wind directions I: Identifying entanglement in nature and cognition. Foundations of Science, 23, 323–335. https://doi.org/10.1007/s10699-017-9528-9 CrossRefGoogle Scholar
  7. 7.
    Aerts, D., Argüelles, J., Beltran, L., Geriente, S., Sassoli de Bianchi, M., Sozzo, S., et al. (2018). Spin and wind directions II: A bell state quantum model. Foundations of Science, 23, 337–365. https://doi.org/10.1007/s10699-017-9530-2 CrossRefGoogle Scholar
  8. 8.
    Aerts, D., & Sassoli de Bianchi, M. (2014). The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Annals of Physics, 351, 975–102. https://doi.org/10.1016/j.aop.2014.09.020. See also the erratum: Annals of Physics, 366, 197–198. https://doi.org/10.1016/j.aop.2016.01.001
  9. 9.
    Aerts, D., & Sassoli de Bianchi, M. (2015). The unreasonable success of quantum probability I: Quantum measurements as uniform measurements. Journal of Mathematical Psychology, 67, 51–75.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Aerts, D., & Sassoli de Bianchi, M. (2016). The extended Bloch representation of quantum mechanics. Explaining superposition, interference and entanglement. Journal of Mathematical Physics, 57, 122110. https://doi.org/10.1063/1.4973356 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Aerts, D., & Sassoli de Bianchi, M. (2017). Universal measurements. Singapore: World Scientific.CrossRefGoogle Scholar
  12. 12.
    Aerts, D., & Sassoli de Bianchi, M. (2017). Beyond-quantum modeling of question order effects and response replicability in psychological measurements. Journal of Mathematical Psychology, 79, 104–120. https://doi.org/10.1016/j.jmp.2017.03.004 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Aerts, D., Sassoli de Bianchi, M., & Sozzo, S. (2016). On the foundations of the Brussels operational-realistic approach to cognition. Frontiers in Physics, 4, 17.  https://doi.org/10.3389/fphy.2016.00017 CrossRefGoogle Scholar
  14. 14.
    Aerts, D., Sassoli de Bianchi, M., Sozzo, S., & Veloz, T. (2018). On the conceptuality interpretation of quantum and relativity theories. Foundations of Science. https://doi.org/10.1007/s10699-018-9557-z
  15. 15.
    Aerts, D., Sassoli de Bianchi, M., Sozzo, S., & Veloz. T. (2018). Modeling human decision-making: An overview of the Brussels quantum approach. Foundations of Science. https://doi.org/10.1007/s10699-018-9559-x
  16. 16.
    Aerts, D., & Sozzo, S. (2016). Quantum structure in cognition: Origins, developments, successes and expectations. In E. Haven & A. Khrennikov (Eds.), The Palgrave handbook of quantum models in social science: Applications and grand challenges (pp. 157–193). London: Palgrave & Macmillan.Google Scholar
  17. 17.
    Aerts, D., Sozzo, S., & Veloz, T. (2015). Quantum structure in cognition and the foundations of human reasoning. International Journal of Theoretical Physics, 54, 4557–4569.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Aerts, D., Sozzo, S., & Veloz, T. (2015). Quantum structure of negation and conjunction in human thought. Frontiers in Psychology, 6, 1447.  https://doi.org/10.3389/fpsyg.2015.01447 CrossRefGoogle Scholar
  19. 19.
    Agosti, M., Colotti, R., & Gradenigo, G. (1991). A two-level hypertext retrieval model for legal data. In SIGIR ‘91: Proceedings of the 14th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 316–325). New York, NY: ACM Press.CrossRefGoogle Scholar
  20. 20.
    Agosti, M., Crestani, F., & Melucci, M. (1995). Automatic authoring and construction of hypermedia for information retrieval. ACM Multimedia Systems, 3, 15–24.CrossRefGoogle Scholar
  21. 21.
    Bach, R., Pope, D., Liou, S.-H., & Batelaan, H. (2013). Controlled double-slit electron diffraction. New Journal of Physics, 15, 033018.CrossRefGoogle Scholar
  22. 22.
    D’Ariano, G. M., Paris, M. G. A., & Sacchi, M. F. (2004). Quantum tomographic methods. Lecture Notes in Physics, 649, 7–58.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Dür, W., Lamprecht, R., & Heusler, S. (2017). Towards a quantum internet. European Journal of Physics, 38, 043001.CrossRefGoogle Scholar
  24. 24.
    Feynman, R. P. , Leighton, R. B., & Sands, M. (1964). The Feynman Lectures on Physics (Vol. III), New York, NY: Addison-Wesley (revised and extended edition in 2005).Google Scholar
  25. 25.
    Foskett, D. (1980). Thesaurus. In A. Kent, H. Lancour & J. Daily (Eds), Encyclopedia of library and information science (Vol. 30, pp. 416–462). New York, NY: Marcel Dekker.Google Scholar
  26. 26.
    Melucci, M. (2012). Contextual search: A computational framework. Foundation and Trends in Information Retrieval, 6, 257–405.CrossRefGoogle Scholar
  27. 27.
    Melucci, M. (2015). Introduction to information retrieval and quantum mechanics. In The Information Retrieval Series (Vol. 35). Berlin: Springer. https://doi.org/10.1007/978-3-662-48313-8 CrossRefGoogle Scholar
  28. 28.
    Sassoli de Bianchi, M. (2015). God may not play dice, but human observers surely do. Foundations of Science, 20, 77–105. https://doi.org/10.1007/s10699-014-9352-4 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sordoni, A., He, J., & Nie, J.-Y. (2013). Modeling latent topic interactions using quantum interference for information retrieval. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management - CIKM ‘13 (pp. 1197–1200). New York, NY: ACM Press. https://doi.org/10.1145/2505515.2507854 Google Scholar
  30. 30.
    Van Rijsbergen, C. J. (2004). The geometry of information retrieval. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diederik Aerts
    • 1
    • 2
  • Massimiliano Sassoli de Bianchi
    • 1
    • 3
  • Sandro Sozzo
    • 4
    Email author
  • Tomas Veloz
    • 1
    • 5
    • 6
  1. 1.Center Leo Apostel for Interdisciplinary StudiesBrusselsBelgium
  2. 2.Department of MathematicsBrussels Free UniversityBrusselsBelgium
  3. 3.Laboratorio di Autoricerca di BaseBarbengoSwitzerland
  4. 4.School of Business and Centre IQSCSUniversity of LeicesterLeicesterUK
  5. 5.Universidad Andres BelloDepartamento Ciencias Biológicas, Facultad Ciencias de la VidaSantiagoChile
  6. 6.Fundación para el Desarrollo Interdisciplinario de la Ciencia la Tecnología y las ArtesSantiagoChile

Personalised recommendations