Calciotropic Hormones and Osteosarcopenia

  • Guillaume T. DuvalEmail author
  • Hélène Meytadier
  • Cédric Annweiler
  • Gustavo Duque


Increase in life expectancy and decrease in mortality associated with a decrease in physical activity leads to population aging and the development of certain age-related pathologies such as osteoporosis and sarcopenia. These two conditions are very often linked and denominated under the same term: osteosarcopenia. There is an interconnection between muscle and bone permitted by hormonal mediators. Involvement of hormones and calciotropic proteins in osteosarcopenia involves especially vitamin D, parathyroid hormone, osteocalcin, leptin, and gonadal steroid causing changes in bone and muscle structure and function. Osteosarcopenia is a particularly deleterious condition in older persons, increasing the risk of serious health events and reducing life expectancy. Calciotropic hormonal changes would identify people at risk and influence the evolution of health status of these people.

This Chapter presents an inventory of current knowledge concerning the involvement of main calciotropic hormones in muscular and bone health of osteosarcopenic or at-risk patients.


Osteosarcopenia Vitamin D Parathyroid hormone Osteocalcin Leptin Calcium Hormones 


  1. Abboud M, Rybchyn MS, Liu J, Ning Y, Gordon-Thomson C, Brennan-Speranza TC, Cole L, Greenfield H, Fraser DR, Mason RS (2017) The effect of parathyroid hormone on the uptake and retention of 25-hydroxyvitamin D in skeletal muscle cells. J Steroid Biochem Mol Biol 173:173–179PubMedCrossRefGoogle Scholar
  2. Adams JS, Hewison M (2010) Update in vitamin D. J Clin Endocrinol Metab 95:471–478PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allison SJ, Baldock PA, Herzog H (2007) The control of bone remodeling by neuropeptide Y receptors. Peptides 28:320–325PubMedCrossRefGoogle Scholar
  4. Annweiler C, Beauchet O (2009) Relationship between bone, fracture, and exercise: the key role of vitamin D. Arch Intern Med 169:163–168CrossRefGoogle Scholar
  5. Annweiler C, Schott AM, Berrut G, Fantino B, Beauchet O (2009) Vitamin D-related changes in physical performance: a systematic review. J Nutr Health Aging 13:893–898PubMedCrossRefGoogle Scholar
  6. Annweiler C, Souberbielle JC, Schott AM, de Decker L, Berrut G, Beauchet O (2011) Vitamine D chez la personne âgée: les 5 points à retenir. Ger Psychol Neuropsychiatr Vieil 9:259–267Google Scholar
  7. Aonuma H, Miyakoshi N, Hongo M, Kasukawa Y, Shimada Y (2009) Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med 218:201–205PubMedCrossRefGoogle Scholar
  8. Astudillo P, Rios S, Pastenes L, Pino AM, Rodriguez JP (2008) Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) characterizes by impaired leptin action. J Cell Biochem 103:1054–1065PubMedCrossRefGoogle Scholar
  9. Atalay S, Elci A, Kayadibi H, Onder CB, Aka N (2012) Diagnostic utility of osteocalcin, Undercarboxylated osteocalcin, and alkaline phosphatase for osteoporosis in premenopausal and postmenopausal women. Ann Lab Med 32:23–30PubMedCrossRefGoogle Scholar
  10. Baczynski R, Massry SG, Magott M, el-Belbessi S, Kohan R, Brautbar N (1985) Effect of parathyroid hormone on energy metabolism of skeletal muscle. Kidney Int 28:722–727PubMedCrossRefGoogle Scholar
  11. Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, Herzog H (2002) Hypothalamic Y2 receptors regulate bone formation. J Clin Investig 109:915–921PubMedCrossRefGoogle Scholar
  12. Baldock PA, Allison S, McDonald MM, Sainsbury A, Enriquez RF, Little DG, Eisman JA, Gardiner EM, Herzog H (2006) Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res 21:1600–1607PubMedCrossRefGoogle Scholar
  13. Baldock PA, Lee NJ, Driessler F, Lin S, Allison S, Stehrer B, Lin EJ, Zhang L, Enriquez RF, Wong IP, McDonald MM, During M, Pierroz DD, Slack K, Shi YC, Yulyaningsih E, Aljanova A, Little DG, Ferrari SL, Sainsbury A, Eisman JA, Herzog H (2009) Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One 4:e8415PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bandeira F, Cassibba S (2015) Hyperparathyroidism and bone health. Rheumatol Rep 17:48CrossRefGoogle Scholar
  15. Benovic JL, Bouvier M, Caron MG, Lefkowitz RJ (1988) Regulation of adenylyl cyclase-coupled beta-adrenergic receptors. Annu Rev Cell Biol 4:405–428PubMedCrossRefGoogle Scholar
  16. Bhan A, Rao AD, Rao DS (2010) Osteomalacia as a result of vitamin D deficiency. Endocrinol Metab Clin N Am 39:321–331CrossRefGoogle Scholar
  17. Binkley N, Buehring B (2009) Beyond FRAX: it’s time to consider sarco-osteopenia. J Clin Densitom 12:413–416PubMedCrossRefGoogle Scholar
  18. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stähelin HB, Dick W (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 33:19–24PubMedCrossRefGoogle Scholar
  19. Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B (2005) Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 293:2257–2264PubMedCrossRefGoogle Scholar
  20. Bischoff-Ferrari HA, Willett WC, Wong JB, Stuck AE, Staehelin HB, Orav EJ, Thoma A, Kiel DP, Henschkowski J (2009) Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med 169:551–561PubMedCrossRefGoogle Scholar
  21. Boland R, Norman A, Ritz E, Hasselbach W (1985) Presence of a 1,25-dihydroxy-vitamin D3 receptor in chick skeletal muscle myoblasts. Biochem Biophys Res Commun 128:305–311PubMedCrossRefGoogle Scholar
  22. Bolland MJ, Grey A, Reid IR (2015) Should we prescribe calcium or vitamin D supplements to treat or prevent osteoporosis? Climacteric 18(Suppl 2):22–31PubMedCrossRefGoogle Scholar
  23. Brighton PJ, Szekeres PG, Willars GB (2004) Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev 56:231–248PubMedCrossRefGoogle Scholar
  24. Bügel S (2003) Vitamin K and bone health. Proc Nutr Soc 62:839–843PubMedCrossRefGoogle Scholar
  25. Buitrago CG, Arango NS, Boland RL (2012) 1α,25(OH)2D3-dependant modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells. J Cell Biochem 113:1170–1181PubMedCrossRefGoogle Scholar
  26. Buitrago C, Pardo VG, Boland R (2013) Role of VDR in 1α,25-dihydroxyvitamin D3-dependant non genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J Steroid Biochem Mol Biol 136:125–130PubMedCrossRefGoogle Scholar
  27. Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT (2001) Leptin reduces ovariectomy- induced bone loss in rats. Endocrinology 142:3546–3553PubMedCrossRefGoogle Scholar
  28. Cammisotto PG, Bukowiecki LJ (2004) Role of calcium in the secretion of leptin from white adipocytes. Am J Phys Regul Integr Comp Phys 287:R1380–R1386Google Scholar
  29. Cangussu LM, Nahas-Neto J, Orsatti CL, Bueloni-Dias FN, Nahas EA (2015) Effect of vitamin D supplementation alone on muscle function in postmenopausal women: a randomized, double-blind, placebo-controlled clinical trial. Osteoporos Int 26:2413–2421PubMedCrossRefGoogle Scholar
  30. Capiati D, Benassati S, Boland RL (2002) 1,25(OH)2-vitamin D3 induces translocation of the vitamin D receptor (VDR) to the plasma membrane in skeletal muscle cells. J Cell Biochem 86:128–135PubMedCrossRefGoogle Scholar
  31. Cauley JS, Greendale GA, Ruppert K et al (2015) Serum 25 hydroxyvitamin D bone mineral density amd fracture risk across the menopause. J Clin Endocrinol Metab 100:2046–2054PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ceglia L (2009) Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care 12:628–633PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ceglia L, Niramitmahapanya S, da Silva MM, Rivas DA, Harris SS, Bischoff-Ferrari H, Fielding RA, Dawson-Hughes B (2013) A randomized study on the effect of vitamin D3 supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab 98:E1927–E1935PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chen XX, Yang T (2015) Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab 33:474–485PubMedCrossRefGoogle Scholar
  35. Christodoulou S, Goula T, Ververidis A, Drosos G (2013) Vitamin D and bone disease. Biomed Res Int 2013:396541PubMedCrossRefGoogle Scholar
  36. Cirmanova V, Bayer M, Starka L, Zajickova K (2008) The effect of leptin on bone: an evolving concept of action. Physiol Res 57(Suppl 1):S143–S151PubMedGoogle Scholar
  37. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415PubMedCrossRefGoogle Scholar
  38. Crepaldi G, Maggi S (2005) Sarcopenia and osteoporosis: ahazardous duet. J Endocrinol Investig 28:66e68Google Scholar
  39. De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338PubMedCrossRefGoogle Scholar
  40. de Souza Genaro P, de Medeiros PM, Szejnfeld VL, Martini LA (2015) Secondary hyperparathyroidism and its relationship with sarcopenia in elderly women. Arch Gerontol Geriatr 60:349–353PubMedCrossRefGoogle Scholar
  41. De Spiegeleer A, Beckwée D, Bautmans I, Petrovic M, Sarcopenia Guidelines Development group of the Belgian Society of Gerontology and Geriatrics (BSGG) (2018) Pharmacological interventions to improve muscle mass, muscle strength and physical performance in older people: an umbrella review of systematic reviews and Meta-analyses. Drugs Aging 35:719–734PubMedCrossRefGoogle Scholar
  42. Drey M, Sieber CC, Bertsch T, Bauer JM, Schmidmaier R, FiAT intervention group (2016) Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res 28:895–899PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRefGoogle Scholar
  44. Dupuy C, Lauwers-Cances V, van Kan GA, Gillette S, Schott AM, Beauchet O, Annweiler C, Vellas B, Rolland Y (2013) Dietary vitamin D intake and muscle mass in older women. Results from a cross-sectional analysis of the EPIDOS study. J Nutr Health Aging 17:119–124PubMedCrossRefGoogle Scholar
  45. Duque G, Daly RM, Sanders K, Kiel DP (2017) Vitamin D, bones and muscle: myth versus reality. Australas J Ageing 36:8–13PubMedCrossRefGoogle Scholar
  46. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorp- tion by the sympathetic nervous system and CART. Nature 434:514–520PubMedCrossRefGoogle Scholar
  47. Faggioni R, Feingold KR, Grunfeld C (2001) Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J 15:2565–2571PubMedCrossRefGoogle Scholar
  48. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308PubMedPubMedCentralCrossRefGoogle Scholar
  49. Figenschau Y, Knutsen G, Shahazeydi S, Johansen O, Svein- bjornsson B (2001) Human articular chondrocytes express functional leptin receptors. Biochem Biophys Res Commun 287:190–197PubMedCrossRefGoogle Scholar
  50. Flier JS (1997) Leptin expression and action: new experimental paradigms. Proc Natl Acad Sci U S A 94:4242–4245PubMedPubMedCentralCrossRefGoogle Scholar
  51. Frederich RC, Löllmann B, Hamann A, Napolitano-Rosen A, Kahn BB, Lowell BB, Flier JS (1995) Expression of Ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest 96:1658–1663PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815PubMedCrossRefGoogle Scholar
  53. Garber AJ (1983) Effects of parathyroid hormone on skeletal muscle protein and amino acid metabolism in the rat. J Clin Invest 71:1806–1821PubMedPubMedCentralCrossRefGoogle Scholar
  54. Grigorie D, Neacsu E, Marinescu M, Popa O (2003) Circulating osteoprotegerin and leptin levels in postmenopausal women with and without osteoporosis. Roman J Int Med 41:409–415Google Scholar
  55. Gumieiro DN, Murino Rafacho BP, Buzati Pereira BL, Cavallari KA, Tanni SE, Azevedo PS, Polegato BF, Mamede Zornoff LA, Dinhane DI, Innocenti Dinhane KG, Cação Pereira GJ, de Paiva SA, Minicucci MF (2015) Vitamin D serum levels are associated with handgrip strength but not with muscle mass or length of hospital stay after hip fracture. Nutrition 31:931–934PubMedCrossRefGoogle Scholar
  56. Gundberg CM, Lian JB, Gallop PM, Steinberg JJ (1983) Urinary gamma-carboxyglutamic acid and serum osteocalcin as bone markers: studies in osteoporosis and Paget’s disease. J Clin Endocrinol Metab 57:1221–1225PubMedCrossRefGoogle Scholar
  57. Hadji P, Bock K, Gotschalk M, Hars O, Backhus J, Emons G, Schulz KD (2003) The influence of serum leptin concentration on bone mass assessed by quantitative ultrasonometry in pre and postmenopausal women. Maturitas 44:141–148PubMedCrossRefPubMedCentralGoogle Scholar
  58. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546PubMedCrossRefGoogle Scholar
  59. Hamrick MW (2017) Role of the cytokine-like hormone leptin in muscle-bone crosstalk with aging. J Bone Metab 24:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hart-zell D, Baile CA (2005) Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin- deficient ob/ob mice. J Bone Miner Res 20:994–1001PubMedCrossRefGoogle Scholar
  61. Hanada R, Teranishi H, Pearson JT, Kurokawa M, Hosoda H, Fukushima N, Fukue Y, Serino R, Fujihara H, Ueta Y, Ikawa M, Okabe M, Murakami N, Shirai M, Yoshimatsu H, Kangawa K, Kojima M (2004) Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat Med 10:1067–1073PubMedCrossRefGoogle Scholar
  62. Hassan EB, Duque G (2017) Osteosarcopenia: a new geriatric syndrome. Aust Fam Physician nov 46:849–853Google Scholar
  63. Hipmair G, Bohler N, Maschek W, Soriguer F, Rojo-Martinez G, Schimetta W, Pichler R (2010) Serum leptin is correlated to high turnover in osteoporosis. Neuro Endocrinol Lett 31:155–160PubMedGoogle Scholar
  64. Hirschfeld HP, Kinsella R, Duque G (2017) Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int 28:2781–2790PubMedCrossRefGoogle Scholar
  65. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281PubMedCrossRefGoogle Scholar
  66. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209PubMedCrossRefGoogle Scholar
  67. Holvik K, Ahmed LA, Forsmo S et al (2013) Low serum levels of 25-hydroxyvitamin D predict hip fracture in the elderly: a NOREPOS study. J Clin Endocrinol Metab 98:3341–3350PubMedCrossRefGoogle Scholar
  68. Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD et al (2004) PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res févr 19(2):235–244CrossRefGoogle Scholar
  69. Hubbard RE, O'Mahony MS, Calver BL, Woodhouse KW (2008) Nutrition, inflammation, and leptin levels in aging and frailty. J Am Geriatr Soc 56:279–284PubMedCrossRefGoogle Scholar
  70. Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Gunawardene P, Demontiero O, Duque G (2015a) Comprehensive nutritional status in sarco-osteoporotic older adults. J Nutr Health Aging 19:474–480PubMedCrossRefGoogle Scholar
  71. Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Muir SW, Montero-Odasso M, Gunawardene P, Demontiero O, Duque G (2015b) Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc 16:290–295PubMedCrossRefGoogle Scholar
  72. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ (2014) Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 15:51–60PubMedCrossRefGoogle Scholar
  73. Irani PF (1976) Electromyography in nutritional osteomalacic myopathy. J Neurol Neurosurg Psychiatry 39:686–693PubMedPubMedCentralCrossRefGoogle Scholar
  74. Irazoqui AP, Boland RL, Buitrago CG (2014) Actions of 1,25(OH)2-vitamin D on the cellular cycle depend on VDR and p38 MAPK in skeletal muscle cells. J Mol Endocrinol 53:331–343PubMedCrossRefGoogle Scholar
  75. Ivaska KK, Hentunen TA, Vääräniemi J, Ylipahkala H, Pettersson K, Vääräniemi HK (2004) Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 279:18361–18369PubMedCrossRefGoogle Scholar
  76. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446PubMedPubMedCentralCrossRefGoogle Scholar
  77. Joborn C, Joborn H, Rastad J (1988) Maximal isokinetic muscle strength in patients with primary hyperparathyroidism before and after parathyroid surgery. Br J Surg 75:77–80PubMedCrossRefGoogle Scholar
  78. Karsenty G (2006) Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 4:341–348PubMedCrossRefGoogle Scholar
  79. Karsenty G, Olson EN (2016) Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell 164:1248–1256PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116:687–695PubMedCrossRefGoogle Scholar
  81. Kishida Y, Hirao M, Tamai N, Nampei A, Fujimoto T, Nakase T, Shimizu N, Yoshikawa H, Myoui A (2005) Leptin regulates chondrocyte differentiation and matrix maturation during endochondral ossification. Bone 37:607–621PubMedCrossRefGoogle Scholar
  82. Kristoffersson A, Boström A, Söderberg T (1992) Muscle strength is improved after parathyroidectomy in patients with primary hyperparathyroidism. Br J Surg 79:165–168PubMedCrossRefGoogle Scholar
  83. Kuo TR, Chen CH (2017) Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res 5:18PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469PubMedPubMedCentralCrossRefGoogle Scholar
  85. Levinger I, Lin X, Zhang X, Brennan-Speranza TC, Volpato B, Hayes A, Jerums G, Seeman E, McConell G (2016) The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo. Osteoporos Int 27:653–663PubMedCrossRefGoogle Scholar
  86. Levy JR, Gyarmati J, Lesko JM, Adler RA, Stevens W (2000) Dual regulation of leptin secretion: intracellular energy and calcium dependence of regulated pathway. Am J Physiol Endocrinol Metab 278:E892–E901PubMedCrossRefGoogle Scholar
  87. Lin S, Boey D, Herzog H (2004) NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 38:189–200PubMedCrossRefGoogle Scholar
  88. Lin YY, Chen CY, Ding ST (2017) Adiponectin receptor 1 resists the decline of serum osteocalcin and GPRC6A expression in ovariectomized mice. PLoS One 12:e0189063PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501PubMedCrossRefGoogle Scholar
  90. Lips P, van Schoor NM (2011) The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab 25:585–591PubMedCrossRefGoogle Scholar
  91. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161PubMedCrossRefGoogle Scholar
  92. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dar-deno TA, Kim SY, Hamnvik OP, Koniaris A (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567–E584PubMedPubMedCentralCrossRefGoogle Scholar
  93. Maor G, Rochwerger M, Segev Y, Phillip M (2002) Leptin acts as a growth factor on the chondrocytes of skeletal growth cen- ters. J Bone Miner Res 17:1034–1043PubMedCrossRefGoogle Scholar
  94. Martin A, de Vittoris R, David V, Moraes R, Begeot M, Lafage- Proust MH, Alexandre C, Vico L, Thomas T (2005) Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology 146:3652–3659PubMedCrossRefGoogle Scholar
  95. Melamed ML, Michos ED, Post W, Astor B (2008) 25-hydroxyvitamin D levels and risk of mortality in the general population. Arch Intern Med 168:1629–1637PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galán-Díez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, Karsenty G (2017) Osteocalcin signaling in Myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 25:218PubMedCrossRefGoogle Scholar
  97. Michos ED, Melamed ML (2008) Vitamin D and cardiovascular disease risk. Curr Opin Clin Metab Care 11:7–12CrossRefGoogle Scholar
  98. Mitnick MA, Grey A, Masiukiewicz U, Bartkiewicz M, Rios-Velez L, Friedman S, Xu L, Horowitz MC, Insogna K (2001) Parathyroid hormone induces hepatic production of bioactive interleukin-6 and its soluble receptor. Am J Physiol Endocrinol Metab 280:E405–E412PubMedCrossRefGoogle Scholar
  99. Molina P, Carrero JJ, Bover J, Chauveau P, Mazzaferro S, Torres PU, European Renal Nutrition (ERN) and Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Working Groups of the European Renal Association-European Dialysis Transplant Association (ERA-EDTA) (2017) Vitamin D, a modulator of musculoskeletal health in chronic kidney disease. J Cachexia Sarcopenia Muscle 8:686–701PubMedPubMedCentralCrossRefGoogle Scholar
  100. Montero-Odasso M, Sakurai R, Muir-Hunter S, Islam A, Doherty T, Duque G, Crilly R (2016) Serum parathyroid hormone but not vitamin D is associated with impaired gait in community-dwelling older adults. J Am Geriatr Soc 64:2606–2608PubMedCrossRefGoogle Scholar
  101. Mori A, Nishino T, Obata Y, Nakazawa M, Hirose M, Yamashita H, Uramatsu T, Shinzato K, Kohno S (2013) The effect of active vitamin D administration on muscle mass in hemodialysis patients. Clin Drug Investig 33:837–846PubMedCrossRefGoogle Scholar
  102. Motyl KJ, Rosen CJ (2012 Oct) Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie 94(10):2089–2096PubMedPubMedCentralCrossRefGoogle Scholar
  103. Muoio DM, Dohm GL, Fiedorek FT Jr, Tapscott EB, Coleman RA (1997) Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46:1360–1363PubMedCrossRefGoogle Scholar
  104. Odabasi E, Ozata M, Turan M, Bingol N, Yonem A, Cakir B, Kutlu M, Ozdemir IC (2000) Plasma leptin concentrations in postmenopausal women with osteoporosis. Eur J Endocrinol 142:170–173PubMedCrossRefGoogle Scholar
  105. Ormarsdottir S, Ljunggren O, Mallmin H, Olofsson H, Blum WF, Loof L (2001) Inverse relationship between circulating levels of leptin and bone mineral density in chronic liver dis- ease. J Gastroenterol Hepatol 16:1409–1414PubMedCrossRefGoogle Scholar
  106. Park S, Ham JO, Lee BK (2014) A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr 33:900–905PubMedCrossRefGoogle Scholar
  107. Peterlik M, Cross HS (2005) Vitamin D and calcium deficits predispose for multiple chronic diseases. Euro J Clin Invest 35:290–304CrossRefGoogle Scholar
  108. Pleasure D, Wyszynski B, Summer A, Schotland D, Feldman B, Nugent N, Hitz K, Goodman DB (1979) Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest 64:1157–1167PubMedPubMedCentralCrossRefGoogle Scholar
  109. Prineas JW, Mason AS, Henson RA (1965) Myopathy in metabolic bone disease. Br Med J 1:1034–1036PubMedPubMedCentralCrossRefGoogle Scholar
  110. Reid IR, Bolland MJ, Grey A (2014) Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet 383:146–155PubMedCrossRefGoogle Scholar
  111. Reseland JE, Syversen U, Bakke I, Qvigstad G, Eide LG, Hjertner O, Gordeladze JO, Drevon CA (2001) Leptin is ex- pressed in and secreted from primary cultures of human os- teoblasts and promotes bone mineralization. J Bone Miner Res 16:1426–1433PubMedCrossRefGoogle Scholar
  112. Roux C, Arabi A, Porcher R, Garnero P (2003) Serum leptin as a determinant of bone resorption in healthy postmenopausal women. Bone 33:847–852PubMedCrossRefGoogle Scholar
  113. Ruhl CE, Everhart JE (2002) Relationship of serum leptin concentration with bone mineral density in the United States population. J Bone Miner Res 17:1896–1903PubMedCrossRefGoogle Scholar
  114. Sahin G, Polat G, Baethis S, Milcan A, Baethdatoethlu O, Er-doethan C, Camdeviren H (2003) Body composition, bone mineral density, and circulating leptin levels in postmenopausal Turkish women. Rheumatol Int 3:87–91CrossRefGoogle Scholar
  115. Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Gómez-Ambrosi J, Frühbeck G (2009) Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice. PLoS One 4:e6808PubMedPubMedCentralCrossRefGoogle Scholar
  116. Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S (2013) 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol Nutr Food Res 57:2137–2146PubMedCrossRefGoogle Scholar
  117. Sambrook PN, Chen JS, March LM, Cameron ID, Cumming RG, Lord SR, Zochling J, Sitoh YY, Lau TC, Schwarz J, Seibel MJ (2004) Serum parathyroid hor- mone predicts time to fall independent of vitamin D status in a frail elderly popu- lation. J Clin Endocrinol Metab 89:1572–1576PubMedCrossRefGoogle Scholar
  118. Sato M, Takeda N, Sarui H, Takami R, Takami K, Hayashi M, Sasaki A, Kawachi S, Yoshino K, Yasuda K (2001) Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab 86:5273–5276PubMedCrossRefGoogle Scholar
  119. Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 20:187–192PubMedCrossRefGoogle Scholar
  120. Sato S, Hanada R, Kimura A, Abe T, Matsumoto T, Iwasaki M, Inose H, Ida T, Mieda M, Takeuchi Y, Fukumoto S, Fujita T, Kato S, Kangawa K, Kojima M, Shinomiya K, Takeda S (2007) Central control of bone remodeling by neuromedin U. Nat Med 13:1234–1240PubMedCrossRefGoogle Scholar
  121. Schwetz V, Pieber T, Obermayer-Pietsch B (2012) The endocrine role of the skeleton: background and clinical evidence. Eur J Endocrinol 166:959–967PubMedCrossRefGoogle Scholar
  122. Scott D, Ebeling PR, Sanders KM, Aitken D, Winzenberg T, Jones G (2015) Vitamin d and physical activity status: associations with five-year changes in body composition and muscle function in community-dwelling older adults. J Clin Endocrinol Metab 100:670–678PubMedCrossRefGoogle Scholar
  123. Shi YC, Baldock PA (2012) Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 50:430–436PubMedCrossRefGoogle Scholar
  124. Singh S, Kumar D, Lal AK (2015) Serum osteocalcin as a diagnostic biomarker for primary osteoporosis in women. J Clin Diagn Res 9:RC04–RC07PubMedPubMedCentralGoogle Scholar
  125. Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985PubMedCrossRefGoogle Scholar
  126. Steinberg GR, Parolin ML, Heigenhauser GJ, Dyck DJ (2002) Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 283:E187–E192PubMedCrossRefGoogle Scholar
  127. Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Murthy L, Grill V, Duque G (2018) High parathyroid hormone levels are associated with osteosarcopenia in older individuals with a history of falling. Maturitas 113:21–25PubMedCrossRefGoogle Scholar
  128. Swaminathan R (2001) Biochemical markers of bone turnover. Clin Chim Acta 313:95–105PubMedCrossRefGoogle Scholar
  129. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedCrossRefGoogle Scholar
  130. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271PubMedCrossRefGoogle Scholar
  131. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638PubMedCrossRefGoogle Scholar
  132. Thomas T, Burguera B, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Riggs BL, Khosla S (2001) Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29:114–120PubMedCrossRefGoogle Scholar
  133. Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT (2013) Peripheral leptin regulates bone formation. J Bone Miner Res 28:22–34PubMedPubMedCentralCrossRefGoogle Scholar
  134. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB et al (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57:M326–M332PubMedCrossRefGoogle Scholar
  135. Visser M, Deeg DJ, Lips P (2003) Longitudinal aging study Amsterdam. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the longitudinal aging study Amsterdam. J Clin Endocrinol Metab 88:5766–5772PubMedCrossRefGoogle Scholar
  136. Walrand S (2016) Effect of vitamin D on skeletal muscle. Geriatr Psychol Neuropsychiatr Vieil 14:127–134PubMedGoogle Scholar
  137. Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L (1998) A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393:684–688PubMedCrossRefGoogle Scholar
  138. Wren AM, Small CJ, Abbott CR, Jethwa PH, Kennedy AR, Murphy KG, Stanley SA, Zollner AN, Ghatei MA, Bloom SR (2002) Hypothalamic actions of neuromedin U. Endocrinology 143:4227–4234PubMedCrossRefGoogle Scholar
  139. Wu N, Wang QP, Li H, Wu XP, Sun ZQ, Luo XH (2010) Relationships between serum adiponectin, leptin concentrations and bone mineral density, and bone biochemical markers in Chinese women. Clin Chim Acta 411:771–775PubMedCrossRefGoogle Scholar
  140. Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, Ozuru R, Sugishita T, Chihara K (2001) Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol 55:341–347CrossRefGoogle Scholar
  141. Yasumura S, Aloia JF, Gundberg CM, Yeh J, Vaswani AN, Yuen K, Lo Monte AF, Ellis KJ, Cohn SH (1987) Serum osteocalcin and total body calcium in normal pre- and postmenopausal women and postmenopausal osteoporotic patients. J Clin Endocrinol Metab 64:681–685PubMedCrossRefGoogle Scholar
  142. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neuroscience, Division of Geriatric Medicine; Angers University HospitalUniversity Memory Clinic of AngersAngersFrance
  2. 2.Robarts Research Institute, Department of Medical BiophysicsSchulich School of Medicine and Dentistry, the University of Western OntarioLondonCanada
  3. 3.Australian Institute for Musculoskeletal Science (AIMSS)The University of Melbourne and Western HealthSt. AlbansAustralia
  4. 4.Department of Medicine-Western Health, Melbourne Medical SchoolThe University of MelbourneSt. AlbansAustralia

Personalised recommendations