Advertisement

Osteosarcopenia as a Lipotoxic Disease

  • Ahmed Al Saedi
  • Craig A. Goodman
  • Damian E. Myers
  • Alan Hayes
  • Gustavo DuqueEmail author
Chapter

Abstract

Osteosarcopenia, a combination of osteoporosis and sarcopenia is characterized by a synchronic loss of bone mineral density and muscle mass, which affects an important subset of frail individuals at higher risk of institutionalization, falls and fractures. This condition has been associated with fat accumulation in bone and muscles. This fat negatively impacts cell function and structure through secretion of free fatty acids and adipokines; a phenomenon called lipotoxicity. The aim of this chapter is to summarize the role of fat infiltration in the pathogenesis of osteosarcopenia including the pathways that are affected by adipocyte-secreted factors. This chapter will also explore the current and future therapeutic implications of targeting fat infiltration and lipotoxicity in osteosarcopenia.

Keywords

Aging Sarcopenia Osteoporosis Osteosarcopenia Autophagy Apoptosis Lipotoxicity Palmitate Rapamycin 

Abbreviations

ATG

Autophagy proteins

BM

Bone Marrow

BMC

Bone mineral content

BMD

Bone mineral density

BMP

Bone morphogenetic protein

BMSCs

Bone marrow-derived mesenchymal stem cell

BNIP3

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3

ERK

Extracellular signal-regulated kinases

FFA

Free Fatty Acids

HDL

High-density lipoproteins

HFD

High fat diet

HSD

High sugar diet

JNK

C-Jun N-terminal kinases

LC3

Microtubule-associated protein light chain

LDLs

Low-density lipoproteins

LPL

Lipoprotein lipase

PA

Palmitic acid

TCA

Tricarboxylic Acid

ULK

UNC-51-like Kinase

References

  1. Al Saedi A, Bani Hassan E, Duque G (2019b) The diagnostic role of fat in osteosarcopenia. J Lab Precision Med 4:7CrossRefGoogle Scholar
  2. Bandet CL, Tan-Chen S, Bourron O, Le Stunff H, Hajduch E (2019) Sphingolipid metabolism: new insight into ceramide-induced lipotoxicity in muscle cells. Int J Mol Sci 20(3):479PubMedCentralCrossRefGoogle Scholar
  3. Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O, STEADY Group (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3(12):948–957PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bermeo S, Gunaratnam K, Duque G (2014) Fat and bone interactions. Curr Osteoporos Rep 12(2):235–242PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bermeo S, Al Saedi A, Vidal C, Khalil M, Pang M, Troen BR, Myers D, Duque G (2019) Treatment with an inhibitor of fatty acid synthase attenuates bone loss in ovariectomized mice. Bone 122:114–122PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bevier WC, Wiswell RA, Pyka G, Kozak KC, Newhall KM, Marcus R (1989) Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res 4(3):421–432PubMedCrossRefPubMedCentralGoogle Scholar
  7. Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370(1):82–96PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614PubMedPubMedCentralCrossRefGoogle Scholar
  9. Boden G, Lebed B, Schatz M, Homko C, Lemieux S (2001) Effects of acute changes of plasma free fatty acids on Intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50(7):1612–1617PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bonsett CA, Rudman A (1984) Duchenne’s muscular dystrophy: a tissue culture perspective. Indiana Med 77(6):446–449PubMedPubMedCentralGoogle Scholar
  11. Bonsett CA, Rudman A (1994) ‘Oil globules’ in Duchenne muscular dystrophy--history, demonstration, and metabolic significance. Med Hypotheses 43(5):327–338PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bonsett CA, Rudman A, Elliott AY (1979) Intracellular lipid in pseudohypertrophic muscular dystrophy tissue culture. J Indiana State Med Assoc 72(3):184–187PubMedPubMedCentralGoogle Scholar
  13. Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE et al (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A 109(35):14170–14175PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bosma M (2016) Lipid droplet dynamics in skeletal muscle. Exp Cell Res 340(2):180–186PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bouchard DR, Janssen I (2010) Dynapenic-obesity and physical function in older adults. J Gerontol A Biol Sci Med Sci 65(1):71–77PubMedCrossRefPubMedCentralGoogle Scholar
  16. Brons C, Grunnet LG (2017) Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? Eur J Endocrinol 176(2):R67–r78PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brookheart RT, Michel CI, Schaffer JE (2009) As a matter of fat. Cell Metab 10(1):9–12PubMedPubMedCentralCrossRefGoogle Scholar
  18. Budui SL, Rossi AP, Zamboni M (2015) The pathogenetic bases of sarcopenia. Clin Cases Miner Bone Metab 12(1):22–26PubMedPubMedCentralGoogle Scholar
  19. Campbell TL, Mitchell AS, McMillan EM, Bloemberg D, Pavlov D, Messa I et al (2015) High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle. Exp Biol Med (Maywood) 240(5):657–668CrossRefGoogle Scholar
  20. Carobbio S, Pellegrinelli V, Vidal-Puig A (2017) Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Adv Exp Med Biol 960:161–196PubMedCrossRefPubMedCentralGoogle Scholar
  21. Carroll JE, Norris BJ, Brooke MH (1985) Defective [U-14 C] palmitic acid oxidation in Duchenne muscular dystrophy. Neurology 35(1):96–97PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cawthon PM, Fox KM, Gandra SR, Delmonico MJ, Chiou CF, Anthony MS et al (2009) Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J Am Geriatr Soc 57(8):1411–1419PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chang Y-C, Liu H-W, Chen Y-T, Chen Y-A, Chen Y-J, Chang S-J (2018) Resveratrol protects muscle cells against palmitate-induced cellular senescence and insulin resistance through ameliorating autophagic flux. J Food Drug Anal 26(3):1066–1074PubMedCrossRefPubMedCentralGoogle Scholar
  24. Choi JW, Ohn JH, Jung HS, Park YJ, Jang HC, Chung SS et al (2018) Carnitine induces autophagy and restores high-fat diet-induced mitochondrial dysfunction. Metab Clin Exp 78:43–51PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chung YH, Jang Y, Choi B, Song DH, Lee EJ, Kim SM et al (2014) Beclin-1 is required for RANKL-induced osteoclast differentiation. J Cell Physiol 229(12):1963–1971PubMedCrossRefPubMedCentralGoogle Scholar
  26. Clark BC, Manini TM (2012) What is dynapenia? Nutrition (Burbank, Los Angeles County, Calif) 28(5):495–503CrossRefGoogle Scholar
  27. Coen PM, Goodpaster BH (2012) Role of intramyocelluar lipids in human health. Trends Endocrinol Metab 23(8):391–398PubMedPubMedCentralCrossRefGoogle Scholar
  28. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH (2011) Bone remodelling at a glance. J Cell Sci 124(Pt 7):991–998PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet : TIG 24(12):604–612PubMedCrossRefPubMedCentralGoogle Scholar
  31. Curtis E, Litwic A, Cooper C, Dennison E (2015) Determinants of muscle and bone aging. J Cell Physiol 230(11):2618–2625PubMedPubMedCentralCrossRefGoogle Scholar
  32. Daroszewska A, van ‘t Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L et al (2011) A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget’s disease-like disorder in mice. Hum Mol Genet 20(14):2734–2744PubMedCrossRefPubMedCentralGoogle Scholar
  33. De Stefanis D, Mastrocola R, Nigro D, Costelli P, Aragno M (2017) Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle. Eur J Nutr 56(1):363–373PubMedCrossRefPubMedCentralGoogle Scholar
  34. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163PubMedPubMedCentralCrossRefGoogle Scholar
  35. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90(6):1579–1585PubMedPubMedCentralCrossRefGoogle Scholar
  36. Demontiero O, Boersma D, Suriyaarachchi P, Duque G (2014) Clinical outcomes of impaired muscle and bone interactions. Crit Rev Bone Miner Metab 12(2):86–92CrossRefGoogle Scholar
  37. Deshimaru R, Ishitani K, Makita K, Horiguchi F, Nozawa S (2005) Analysis of fatty acid composition in human bone marrow aspirates. Keio J Med 54(3):150–155PubMedCrossRefPubMedCentralGoogle Scholar
  38. Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM et al (2014) Grip strength across the life course: normative data from twelve British studies. PLoS One 9(12):e113637PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dong X, Bi L, He S, Meng G, Wei B, Jia S et al (2014) FFAs-ROS-ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. Biochimie 101:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  40. Drey M, Sieber CC, Bertsch T, Bauer JM, Schmidmaier R (2016) Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res 28(5):895–899PubMedCrossRefPubMedCentralGoogle Scholar
  41. Drosatos K, Schulze PC (2013) Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep 10(2):109–121PubMedPubMedCentralCrossRefGoogle Scholar
  42. Duchenne G-B (1861) De l’électrisation localisée et de son application à la pathologie. Baillière, ParisGoogle Scholar
  43. Elbaz A, Wu X, Rivas D, Gimble JM, Duque G (2010) Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med 14(4):982–991PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ertunc ME, Hotamisligil GS (2016) Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 57(12):2099–2114PubMedPubMedCentralCrossRefGoogle Scholar
  45. Feng W, Liu B, Liu D, Hasegawa T, Wang W, Han X et al (2016) Long-term Administration of High-fat Diet Corrects Abnormal Bone Remodeling in the tibiae of Interleukin-6-deficient mice. J Histochem Cytochem 64(1):42–53PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–94PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gasparrini M, Rivas D, Elbaz A, Duque G (2009) Differential expression of cytokines in subcutaneous and marrow fat of aging C57BL/6J mice. Exp Gerontol 44(9):613–618PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gimble JM, Nuttall ME (2012) The relationship between adipose tissue and bone metabolism. Clin Biochem 45(12):874–879PubMedCrossRefPubMedCentralGoogle Scholar
  50. Gofman JW, Lindgren FT, Elliott H (1949) Ultracentrifugal studies of lipoproteins of human serum. J Biol Chem 179(2):973–979PubMedPubMedCentralGoogle Scholar
  51. Goodpaster BH, Theriault R, Watkins SC, Kelley DE (2000) Intramuscular lipid content is increased in obesity and decreased by weight loss. Metab Clin Exp 49(4):467–472PubMedCrossRefPubMedCentralGoogle Scholar
  52. Griffith JF, Yeung DK, Ahuja AT, Choy CW, Mei WY, Lam SS et al (2009) A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density. Bone 44(6):1092–1096PubMedCrossRefPubMedCentralGoogle Scholar
  53. Guerra DAP, Paiva AE, Sena IFG, Azevedo PO, Batista ML Jr, Mintz A et al (2018) Adipocytes role in the bone marrow niche. Cytometry Part A 93(2):167–171CrossRefGoogle Scholar
  54. Gueugneau M, Coudy-Gandilhon C, Theron L, Meunier B, Barboiron C, Combaret L et al (2015) Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome. J Gerontol A Biol Sci Med Sci 70(5):566–576PubMedCrossRefPubMedCentralGoogle Scholar
  55. Gunaratnam K, Vidal C, Boadle R, Thekkedam C, Duque G (2013) Mechanisms of palmitate-induced cell death in human osteoblasts. Biology 2(12):1382–1389Google Scholar
  56. Gunaratnam K, Vidal C, Gimble JM, Duque G (2014) Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Endocrinology 155(1):108–116PubMedCrossRefPubMedCentralGoogle Scholar
  57. Halachmi D, Eilam Y (1993) Calcium homeostasis in yeast cells exposed to high concentrations of calcium. Roles of vacuolar H(+)-ATPase and cellular ATP. FEBS Lett 316(1):73–78PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hassan EB, Duque G (2017) Osteosarcopenia: a new geriatric syndrome. Aust Fam Physician 46(11):849–853PubMedPubMedCentralGoogle Scholar
  59. Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34(9):1345–1353PubMedPubMedCentralCrossRefGoogle Scholar
  60. He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50(4):817–823PubMedCrossRefPubMedCentralGoogle Scholar
  61. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z et al (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481(7382):511–515PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hilton TN, Tuttle LJ, Bohnert KL, Mueller MJ, Sinacore DR (2008) Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther 88(11):1336–1344PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hirschfeld HP, Kinsella R, Duque G (2017) Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int 28(10):2781–2790PubMedCrossRefGoogle Scholar
  64. Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA et al (2017) Bone marrow adipocytes. Adipocytes 6(3):193–204CrossRefGoogle Scholar
  65. Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5(7):973–979PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K et al (2013) Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis 4:e844PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ (2014) Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 15:51–60PubMedCrossRefGoogle Scholar
  68. Jilka RL, O’Brien CA (2016) The role of osteocytes in age-related bone loss. Curr Osteoporos Rep 14(1):16–25PubMedCrossRefPubMedCentralGoogle Scholar
  69. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20(7):1992–2003PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kalyani RR, Rodriguez DC, Yeh HC, Golden SH, Thorpe RJ Jr (2015) Diabetes, race, and functional limitations in older U.S. men and women. Diabetes Res Clin Pract 108(3):390–397PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116(5):687–695PubMedCrossRefGoogle Scholar
  72. Kim JE, Ahn MW, Baek SH, Lee IK, Kim YW, Kim JY et al (2008) AMPK activator, AICAR, inhibits palmitate-induced apoptosis in osteoblast. Bone 43(2):394–404PubMedCrossRefPubMedCentralGoogle Scholar
  73. Koga H, Kaushik S, Cuervo AM (2010a) Altered lipid content inhibits autophagic vesicular fusion. FASEB J 24(8):3052–3065PubMedPubMedCentralCrossRefGoogle Scholar
  74. Koga H, Kaushik S, Cuervo AM (2010b) Inhibitory effect of intracellular lipid load on macroautophagy. Autophagy 6(6):825–827PubMedCrossRefPubMedCentralGoogle Scholar
  75. Komatsu M, Waguri S, Koike M, Y-s S, Ueno T, Hara T et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131(6):1149–1163PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kusminski CM, Shetty S, Orci L, Unger RH, Scherer PE (2009) Diabetes and apoptosis: lipotoxicity. Apoptosis 14(12):1484–1495PubMedCrossRefPubMedCentralGoogle Scholar
  77. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB (2010) Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 25(3):513–519PubMedCrossRefPubMedCentralGoogle Scholar
  78. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477PubMedCrossRefPubMedCentralGoogle Scholar
  79. Li RF, Chen G, Ren JG, Zhang W, Wu ZX, Liu B et al (2014) The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis. J Histochem Cytochem 62(12):879–888PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li H, Liu S, Yuan H, Niu Y, Fu L (2017) Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes. Exp Cell Res 354(1):18–24PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lin CH, Hudson AJ, Strickland KP (1972) Fatty acid oxidation by skeletal muscle mithochondria in duchenne dystrophy. Life Sci 11(7, Part 2):355–362CrossRefGoogle Scholar
  82. Liu Y, Palanivel R, Rai E, Park M, Gabor TV, Scheid MP et al (2015) Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes 64(1):36–48PubMedCrossRefPubMedCentralGoogle Scholar
  83. Machebouef M (1929) Researches sur les phosphoaminolipides et les sterides due serum et du plasma sanguins I&II. Soc Chim Biol 11:268–293Google Scholar
  84. Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S (2011) Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol 174(3):527–535PubMedCrossRefPubMedCentralGoogle Scholar
  85. Manolagas SC, Parfitt AM (2010) What old means to bone. Trends Endocrinol Metab 21(6):369–374PubMedPubMedCentralCrossRefGoogle Scholar
  86. Maridas DE, Rendina-Ruedy E, Helderman RC, DeMambro VE, Brooks D, Guntur AR et al (2018) Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton. FASEB J 33:2885–2898PubMedCrossRefPubMedCentralGoogle Scholar
  87. Martin LM, Jeyabalan N, Tripathi R, Panigrahi T, Johnson PJ, Ghosh A et al (2019) Autophagy in corneal health and disease: a concise review. Ocul Surf 17:186–197PubMedCrossRefPubMedCentralGoogle Scholar
  88. Marzetti E, Calvani R, Bernabei R, Leeuwenburgh C (2012) Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty - a mini-review. Gerontology 58(2):99–106PubMedCrossRefPubMedCentralGoogle Scholar
  89. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M et al (2009) Autophagy is required to maintain muscle mass. Cell Metab 10(6):507–515CrossRefPubMedGoogle Scholar
  90. Mattiucci D, Maurizi G, Izzi V, Cenci L, Ciarlantini M, Mancini S et al (2018) Bone marrow adipocytes support hematopoietic stem cell survival. J Cell Physiol 233(2):1500–1511PubMedCrossRefPubMedCentralGoogle Scholar
  91. Meryon E (1852) On granular and fatty degeneration of the voluntary muscles. Medico-Chir Trans 35(1):73–84CrossRefGoogle Scholar
  92. Messier V, Rabasa-Lhoret R, Barbat-Artigas S, Elisha B, Karelis AD, Aubertin-Leheudre M (2011) Menopause and sarcopenia: a potential role for sex hormones. Maturitas 68(4):331–336PubMedCrossRefPubMedCentralGoogle Scholar
  93. Morales PE, Bucarey JL, Espinosa A (2017) Muscle lipid metabolism: role of lipid droplets and Perilipins. J Diabetes Res 2017:10CrossRefGoogle Scholar
  94. Nehlin JO, Just M, Rustan AC, Gaster M (2011) Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 12(4):349–365PubMedCrossRefPubMedCentralGoogle Scholar
  95. Nielsen RH, Karsdal MA, Sorensen MG, Dziegiel MH, Henriksen K (2007) Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival. Biochem Biophys Res Commun 360(4):834–839PubMedCrossRefPubMedCentralGoogle Scholar
  96. Nollet M, Santucci-Darmanin S, Breuil V, Al-Sahlanee R, Cros C, Topi M et al (2014) Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy 10(11):1965–1977PubMedPubMedCentralCrossRefGoogle Scholar
  97. Nuschke A, Rodrigues M, Stolz DB, Chu CT, Griffith L, Wells A (2014) Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Res Ther 5(6):140PubMedPubMedCentralCrossRefGoogle Scholar
  98. Pasiakos SM, Vislocky LM, Carbone JW, Altieri N, Konopelski K, Freake HC et al (2010) Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J Nutr 140(4):745–751PubMedCrossRefPubMedCentralGoogle Scholar
  99. Pinto X, Garcia Gomez MC (2016) New agents for hypercholesterolemia. Med Clin 146(4):172–177CrossRefGoogle Scholar
  100. Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ et al (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6(4):506–522PubMedCrossRefPubMedCentralGoogle Scholar
  101. Pugh TD, Conklin MW, Evans TD, Polewski MA, Barbian HJ, Pass R et al (2013) A shift in energy metabolism anticipates the onset of sarcopenia in rhesus monkeys. Aging Cell 12(4):672–681PubMedPubMedCentralCrossRefGoogle Scholar
  102. Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N et al (2008) Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet 17(24):3897–3908PubMedPubMedCentralCrossRefGoogle Scholar
  103. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet (London, England) 1(7285):785–789CrossRefGoogle Scholar
  104. Rendina-Ruedy E, Guntur AR, Rosen CJ (2017) Intracellular lipid droplets support osteoblast function. Adipocytes 6(3):250–258CrossRefGoogle Scholar
  105. Rosa-Caldwell ME, Brown JL, Lee DE, Blackwell TA, Turner KW, Brown LA et al (2017) Autophagy activation, not peroxisome proliferator-activated receptor γ coactivator 1α, may mediate exercise-induced improvements in glucose handling during diet-induced obesity. Exp Physiol 102(9):1194–1207PubMedCrossRefPubMedCentralGoogle Scholar
  106. Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19(2):109–124PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ryten M, Dunn PM, Neary JT, Burnstock G (2002) ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells. J Cell Biol 158(2):345–355PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sagar T, Rantlha M, Kruger MC, Coetzee M, Deepak V (2016) Ferulic acid impairs osteoclast fusion and exacerbates survival of mature osteoclasts. Cytotechnology 68(5):1963–1972PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sandri M (2010) Autophagy in skeletal muscle. FEBS Lett 584(7):1411–1416PubMedCrossRefPubMedCentralGoogle Scholar
  110. Schenkel LC, Bakovic M (2014) Palmitic acid and oleic acid differentially regulate choline transporter-like 1 levels and Glycerolipid metabolism in skeletal muscle cells. Lipids 49(8):731–744PubMedCrossRefPubMedCentralGoogle Scholar
  111. Scott D, Sanders KM, Aitken D, Hayes A, Ebeling PR, Jones G (2014) Sarcopenic obesity and dynapenic obesity: 5-year associations with falls risk in middle-aged and older adults. Obesity 22(6):1568–1574PubMedCrossRefPubMedCentralGoogle Scholar
  112. Scott D, Chandrasekara SD, Laslett LL, Cicuttini F, Ebeling PR, Jones G (2016) Associations of Sarcopenic obesity and Dynapenic obesity with bone mineral density and incident fractures over 5–10 years in community-dwelling older adults. Calcif Tissue Int 99(1):30–42PubMedCrossRefPubMedCentralGoogle Scholar
  113. Scott D, Shore-Lorenti C, McMillan L, Mesinovic J, Clark RA, Hayes A et al (2018) Associations of components of sarcopenic obesity with bone health and balance in older adults. Arch Gerontol Geriatr 75:125–131PubMedCrossRefPubMedCentralGoogle Scholar
  114. Seessle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W (2015) Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis. Biochim Biophys Acta 1851(5):549–565PubMedCrossRefPubMedCentralGoogle Scholar
  115. Shi L, Zhang T, Liang X, Hu Q, Huang J, Zhou Y et al (2015) Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway. Mol Cell Endocrinol 409:92–102PubMedCrossRefPubMedCentralGoogle Scholar
  116. Shumate JB, Carroll JE, Brooke MH, Choksi RM (1982) Palmitate oxidation in human muscle: comparison to CPT and carnitine. Muscle Nerve 5(3):226–231PubMedCrossRefPubMedCentralGoogle Scholar
  117. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135PubMedPubMedCentralCrossRefGoogle Scholar
  118. Singh L, Tyagi S, Myers D, Duque G (2018) Good, bad, or ugly: the biological roles of bone marrow fat. Curr Osteoporos Rep 16(2):130–137PubMedCrossRefPubMedCentralGoogle Scholar
  119. Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma YZ et al (2002) Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 51(4):1022–1027PubMedCrossRefPubMedCentralGoogle Scholar
  120. Song C, Song C, Tong F (2014) Autophagy induction is a survival response against oxidative stress in bone marrow-derived mesenchymal stromal cells. Cytotherapy 16(10):1361–1370PubMedCrossRefPubMedCentralGoogle Scholar
  121. Stratford S, Hoehn KL, Liu F, Summers SA (2004) Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 279(35):36608–36615PubMedCrossRefPubMedCentralGoogle Scholar
  122. Takada K, Inaba M, Ichioka N, Ueda Y, Taira M, Baba S et al (2006) Treatment of senile osteoporosis in SAMP6 mice by intra-bone marrow injection of allogeneic bone marrow cells. Stem cells (Dayton, Ohio) 24(2):399–405CrossRefGoogle Scholar
  123. Tong J, Li W, Vidal C, Yeo LS, Fatkin D, Duque G (2011) Lamin a/C deficiency is associated with fat infiltration of muscle and bone. Mech Ageing Dev 132(11–12):552–559PubMedCrossRefPubMedCentralGoogle Scholar
  124. Turpin SM, Ryall JG, Southgate R, Darby I, Hevener AL, Febbraio MA et al (2009) Examination of ‘lipotoxicity’ in skeletal muscle of high-fat fed and ob/ob mice. J Physiol 587(7):1593–1605PubMedPubMedCentralCrossRefGoogle Scholar
  125. Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM et al (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20(4):678–686PubMedCrossRefPubMedCentralGoogle Scholar
  126. Unger RH (2003) The physiology of cellular liporegulation. Annu Rev Physiol 65:333–347PubMedCrossRefPubMedCentralGoogle Scholar
  127. Unger RH, Orci L (2002) Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta 1585(2–3):202–212PubMedCrossRefPubMedCentralGoogle Scholar
  128. Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55(9):693–698PubMedPubMedCentralCrossRefGoogle Scholar
  129. Weinstein RS, Manolagas SC (2000) Apoptosis and osteoporosis. Am J Med 108(2):153–164PubMedCrossRefPubMedCentralGoogle Scholar
  130. Woodworth-Hobbs ME, Hudson MB, Rahnert JA, Zheng B, Franch HA, Price SR (2014) Docosahexaenoic acid prevents palmitate-induced activation of proteolytic systems in C2C12 myotubes. J Nutr Biochem 25(8):868–874PubMedPubMedCentralCrossRefGoogle Scholar
  131. Woodworth-Hobbs ME, Perry BD, Rahnert JA, Hudson MB, Zheng B, Russ Price S (2017) Docosahexaenoic acid counteracts palmitate-induced endoplasmic reticulum stress in C2C12 myotubes: impact on muscle atrophy. Phys Rep 5(23):e13530CrossRefGoogle Scholar
  132. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17(10):1235–1241PubMedPubMedCentralCrossRefGoogle Scholar
  133. Yang Y, Zheng X, Li B, Jiang S, Jiang L (2014) Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss. Biochem Biophys Res Commun 451(1):86–92PubMedCrossRefPubMedCentralGoogle Scholar
  134. Ye R, Onodera T, Scherer PE (2019) Lipotoxicity and beta cell maintenance in obesity and type 2 diabetes. J Endocr Soc 3(3):617–631PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zahm AM, Bohensky J, Adams CS, Shapiro IM, Srinivas V (2011) Bone cell autophagy is regulated by environmental factors. Cells Tissues Organs 194(2–4):274–278PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zhou B, Li H, Liu J, Xu L, Guo Q, Zang W et al (2016) Autophagic dysfunction is improved by intermittent administration of osteocalcin in obese mice. Int J Obes 40:833–843CrossRefGoogle Scholar
  137. Zlobine I, Gopal K, Ussher JR (2016) Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta 1861(10):1555–1568PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Australian Institute for Musculoskeletal Science (AIMSS)The University of Melbourne and Western HealthSt. AlbansAustralia
  2. 2.Department of Medicine-Western Health, Melbourne Medical SchoolThe University of MelbourneSt. AlbansAustralia
  3. 3.Institute of Health and SportVictoria UniversityMelbourneAustralia
  4. 4.Institute for Health and Sport (IHES)Victoria UniversityMelbourneAustralia
  5. 5.Department of Medicine-Western HealthThe University of MelbourneSt. AlbansAustralia

Personalised recommendations