Non-pharmacological Interventions for Osteosarcopenia

  • Jacopo Antonino VitaleEmail author
  • Francesco Negrini
  • Giuseppe Banfi


Locomotion, walking, and running are part of our evolutionary history and the sedentary lifestyle of modern world betrays the evolutionary history encoded in our genes. Humans need a future where physical activities will be, like in our ancestral past, a main component of daily life. Physical inactivity is responsible for many chronic diseases and musculoskeletal disorders, such as osteosarcopenia, and it represents one of the main global risks for mortality. Osteoporosis and sarcopenia impose an immense health and social services cost burden on countries. During the last two decades, several leading international organizations have recognized the ability of physical activity to ameliorate the growing burden of chronic diseases and have issued calls to action to make physical exercise a priority for world population. Therefore, physical activity represents a potent non-pharmacological intervention to promote global health and the objective of the present chapter is to present and discuss evidence-based physical activity programs that are able to prevent and counteract both osteoporosis and sarcopenia in our older population.


Locomotion Running Exercise Sedentarism Physical activity Disability Guidelines Non-pharmacological Evidence-based Osteoporosis Sarcopenia 


  1. Akune T, Muraki S, Oka S et al (2014) Exercise habits during middle age are associated with lower prevalence of sarcopenia: the ROAD study. Osteoporos Int 25(3):1081–1088PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bano G, Trevisan C, Carraro C et al (2017) Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas 96:10–15PubMedCrossRefGoogle Scholar
  3. Binder EF, Yarasheski KE, Steger-May K (2005) Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol A Biol Sci Med Sci 60(11):1425–1431PubMedCrossRefPubMedCentralGoogle Scholar
  4. Blair SN, Sallis RE, Hutber A et al (2012) Exercise therapy – the public health message. Scand J Med Sci Sports 22(4):e24–e28PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bocalini DS, Serra AJ, dos Santos L et al (2009) Strength training preserves the bone mineral density of postmenopausal women without hormone replacement therapy. J Aging Health 21(3):519–527PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bramble DM, Lieberman DE (2004) Endurance running and the evolution of Homo. Nature 432:345–352PubMedCrossRefPubMedCentralGoogle Scholar
  7. Brenner DR, Poirier AE, Grundy A et al (2017) Cancer incidence attributable to inadequate physical activity in Alberta in 2012. CMAJ Open 5:E338–E344PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cadore EL, Pinto RS, Bottaro M et al (2014) Strength and endurance training prescription in healthy and frail elderly. Aging Dis 5(3):183–195PubMedPubMedCentralCrossRefGoogle Scholar
  9. Calvani R, Joseph A-M, Adhihetty PJ et al (2013) Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem 394(3):393–414PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cavanaugh DJ, Cann CE (1988) Brisk walking does not stop bone loss in postmenopausal women. Bone 9(4):201–204PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chien MY, Wu YT, Hsu AT et al (2000) Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women. Calcif Tissue Int 67(6):443–448PubMedCrossRefPubMedCentralGoogle Scholar
  12. Conn VS, Koopman RJ, Ruppar TM et al (2014) Insulin sensitivity following exercise interventions: systematic review and meta-analysis of outcomes among healthy adults. J Prim Care Community Health 5(3):211–222PubMedPubMedCentralCrossRefGoogle Scholar
  13. De Matos O, Lopes da Silva DJ, Martinez de Oliveira J et al (2009) Effect of specific exercise training on bone mineral density in women with postmenopausal osteopenia or osteoporosis. Gynecol Endocrinol 25(9):616–620PubMedCrossRefPubMedCentralGoogle Scholar
  14. Derbré F, Gratas-Delamarche A, Gómez-Cabrera MC et al (2014) Inactivity-induced oxidative stress: a central role in age-related sarcopenia? Eur J Sport Sci 14(1):S98–S108PubMedCrossRefPubMedCentralGoogle Scholar
  15. Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57(5):344–358PubMedCrossRefPubMedCentralGoogle Scholar
  16. Duque G (2013) Osteoporosis in older persons: current pharmacotherapy and future directions. Expert Opin Pharmacother 14(14):1949–1958PubMedCrossRefPubMedCentralGoogle Scholar
  17. Duque G, Boersma D, Loza-Diaz G et al (2013) Effects of balance training using a virtual-reality system in older fallers. Clin Interv Aging 8:257–263PubMedPubMedCentralCrossRefGoogle Scholar
  18. Eaglehouse YL, Koh WP, Wang R et al (2017) Physical activity, sedentary time, and risk of colorectal cancer: the Singapore Chinese Health Study. Eur J Cancer Prev 26:469–475PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fielding RA, LeBrasseur NK, Cuoco A et al (2002) High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc 50(4):655–662PubMedCrossRefPubMedCentralGoogle Scholar
  20. Francesco C, Ferro G, Basile C et al (2016) Biomarkers in sarcopenia: a multifactorial approach. Exp Gerontol 85:1–8CrossRefGoogle Scholar
  21. Fyfe JJ, Bishop DJ, Stepto NK (2014) Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med 44(6):743–762PubMedCrossRefPubMedCentralGoogle Scholar
  22. Gabriel DA, Kamen G, Frost G (2006) Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 36(2):133–149PubMedCrossRefPubMedCentralGoogle Scholar
  23. Garber CE, Blissmer B, Deschenes MR et al (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359CrossRefGoogle Scholar
  24. Gómez-Cabello A, Ara I, González-Agüero A et al (2012) Effects of training on bone mass in older adults: a systematic review. Sports Med 42(4):301–325PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gunter K, Baxter-Jones ADG, Mirwald RL et al (2008) Impact exercise increases BMC during growth: an 8-year longitudinal study. J Bone Miner Res 23:986–993PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hassan EB, Duque G (2017) Osteosarcopenia: a new geriatric syndrome. Aust Fam Physician 46(11):849–853PubMedPubMedCentralGoogle Scholar
  27. Hatori M, Hasegawa A, Adachi H et al (1993) The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int 52(6):411–414PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hong K-S, Kim K (2017) Skeletal muscle contraction-induced vasodilation in the microcirculation. J Exer Rehabilit 13(5):502–507CrossRefGoogle Scholar
  29. Horsburgh S, Robson-Ansley P, Adams R et al (2015) Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exercise Immunol Rev 21:26–41Google Scholar
  30. Isbell LA, Pruetz JD, Lewis M et al (1998) Locomotor activity differences between sympatric patas monkeys (Erythrocebus patas) and vervet monkeys (Cercopithecus aethiops): implications for the evolution of long hind limb length in Homo. Am J Physical Anthropol 105:199–207CrossRefGoogle Scholar
  31. Izquierdo M, Ibañez J, HAkkinen K et al (2004) Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc 36(3):435–443PubMedCrossRefPubMedCentralGoogle Scholar
  32. Jeffery N, Spoor F (2004) Prenatal growth and development of the modern human labyrinth. J Anat 204:71–92PubMedPubMedCentralCrossRefGoogle Scholar
  33. Joanisse S, Nederveen JP, Snijders T et al (2017) Skeletal muscle regeneration, repair and Remodelling in aging: the importance of muscle stem cells and vascularization. Gerontology 63(1):91–100PubMedCrossRefPubMedCentralGoogle Scholar
  34. Khosla S, Shane EA (2016) Crisis in the treatment of osteoporosis. J Bone Miner Res 31:1485–1487PubMedCrossRefPubMedCentralGoogle Scholar
  35. Khosla S, Cauley JA, Compston J et al (2016) Addressing the crisis in the treatment of osteoporosis: a path forward. J Bone Miner Res 32:424–430PubMedCrossRefPubMedCentralGoogle Scholar
  36. Krahl H, Michaelis U, Pieper H-G et al (1994) Stimulation of bone growth through sports. Am J Sports Med 22:751–757PubMedCrossRefPubMedCentralGoogle Scholar
  37. Lieberman DE, Bramble DM, Raichlen DA et al (2009) Brawn, and the evolution of human endurance running capabilities. In: The first humans – origin and early evolution of the genus Homo. Springer, GuildfordGoogle Scholar
  38. LIFE Study Investigators, Pahor M, Blair SN et al (2006) Effects of a physical activity intervention on measures of physical performance: results of the lifestyle interventions and Independence for elders pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci 61(11):1157–1165CrossRefGoogle Scholar
  39. Marques EA, Mota J, Machado L et al (2011) Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int 88(2):117–129PubMedCrossRefPubMedCentralGoogle Scholar
  40. Mattson MP (2012). Evolutionary aspects of human exercise–born to run purposefully. Ageing Res Rev;11(3):347–52PubMedPubMedCentralCrossRefGoogle Scholar
  41. Martínez-Amat A, Aibar-Almazán A, Fábrega-Cuadros R et al (2018) Exercise alone or combined with dietary supplements for Sarcopenic obesity in community-dwelling older people: a systematic review of randomized controlled trials. Maturitas 110:92–103PubMedCrossRefPubMedCentralGoogle Scholar
  42. McMillan LB, Zengin A, Ebeling PR et al (2017) Prescribing physical activity for the prevention and treatment of osteoporosis in older adults. Healthcare (Basel) 5(4):85CrossRefGoogle Scholar
  43. Molina KI, Aquaroni Ricci N, Albuquerque de Moraes S et al (2014) Virtual reality using games for improving physical functioning in older adults: a systematic review. J Neuroeng Rehabil 11:156PubMedPubMedCentralCrossRefGoogle Scholar
  44. O’Brien MK, Shawen N, Mummidisetty CK et al (2017) Activity recognition for persons with stroke using Mobile phone technology: toward improved performance in a home setting. J Med Internet Res 19(5):e184PubMedPubMedCentralCrossRefGoogle Scholar
  45. Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16:3–63PubMedCrossRefPubMedCentralGoogle Scholar
  46. Phillips SM (2000) Short-term training: when do repeated bouts of resistance exercise become training? Can J Appl Physiol 25(3):185–193PubMedCrossRefPubMedCentralGoogle Scholar
  47. Phu S, Boersma D, Duque G (2015) Exercise and sarcopenia. J Clin Densitom 18(4):488–492PubMedCrossRefPubMedCentralGoogle Scholar
  48. Pontzer H (2017) Economy and endurance in human evolution. Curr Biol 27:R613–R621PubMedCrossRefPubMedCentralGoogle Scholar
  49. Rolian C, Lieberman DE, Hamill J et al (2009) Walking, running and the evolution of short toes in humans. J Exp Biol 212:713–721PubMedCrossRefPubMedCentralGoogle Scholar
  50. Sakuma K, Yamaguchi A (2012) Sarcopenia and age-related endocrine function. Int J Endocrinol (Article ID 127362):10Google Scholar
  51. Sallis R (2015) Exercise is medicine: a call to action for physicians to assess and prescribe exercise. Phys Sportsmed 43:22–26PubMedCrossRefPubMedCentralGoogle Scholar
  52. Salthouse TA (2003) Memory aging from 18 to 80. Alzheimer Dis Assoc Disord 17:162–167PubMedCrossRefPubMedCentralGoogle Scholar
  53. Sansoni V, Vernillo G, Perego S et al (2017) Bone turnover response is linked to both acute and established metabolic changes in ultra-marathon runners. Endocrine 56:196–204PubMedCrossRefPubMedCentralGoogle Scholar
  54. Santos-Lozano A, Lucia A, Ruilope L et al (2017) Born to run: our future depends on it. Lancet 390(10095):635–636PubMedCrossRefPubMedCentralGoogle Scholar
  55. Scott RA, Callisaya ML, Duque G et al (2018) Assistive technologies to overcome sarcopenia in ageing. Maturitas 112:78–84PubMedCrossRefPubMedCentralGoogle Scholar
  56. Snijders T, Parise G (2017) Role of muscle stem cells in sarcopenia. Curr Opin Clin Nutr Metab Care 20(3):186–190PubMedCrossRefPubMedCentralGoogle Scholar
  57. Sprager S, Juric MB (2015) Inertial sensor-based gait recognition: a review. Sensors 15(9):22089–22127PubMedCrossRefPubMedCentralGoogle Scholar
  58. Stoecker WV, Carson A, Nguyen VH et al (2017) Addressing the crisis in the treatment of osteoporosis: better paths forward. J Bone Miner Res 32(6):1386–1387PubMedCrossRefPubMedCentralGoogle Scholar
  59. Suetta C, Andersen JL, Dalgas U et al (2008) Resistance training induces qualitative changes in muscle morphology, muscle architecture, and muscle function in elderly postoperative patients. J Appl Physiol 105(1):180–186PubMedCrossRefPubMedCentralGoogle Scholar
  60. Sugden MC, Zariwala MC, Holness MJ (2009) PPARs and the orchestration of metabolic fuel selection. Pharmacol Res 60(3):141–150PubMedCrossRefPubMedCentralGoogle Scholar
  61. Tan VP, Macdonald HM, Kim S et al (2014) Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res 29:2161–2181PubMedCrossRefPubMedCentralGoogle Scholar
  62. Taylor D (2014) Physical activity is medicine for older adults. Postgrad Med J 90(1059):26–32PubMedCrossRefPubMedCentralGoogle Scholar
  63. Taylor CR, Heglund NC, Maloiy GM (1982) Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J Exp Biol 97:1–21PubMedPubMedCentralGoogle Scholar
  64. Troy KL, Mancuso ME, Butler TA et al (2018) Exercise early and often: effects of physical activity and exercise on women’s bone health. Int J Environ Res Public Health 28:15(5)Google Scholar
  65. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3:346–355PubMedCrossRefPubMedCentralGoogle Scholar
  66. van Kan A (2009) Epidemiology and consequences of sarcopenia. J Nutr Health Aging 13:708–712CrossRefGoogle Scholar
  67. Varahra A, Rodrigues IB, MacDermid JC et al (2018) Exercise to improve functional outcomes in persons with osteoporosis: a systematic review and meta-analysis. Osteoporos Int 29(2):265–286PubMedCrossRefPubMedCentralGoogle Scholar
  68. Villareal DT, Binder EF, Yarasheski KE et al (2003) Effects of exercise training added to ongoing hormone replacement therapy on bone mineral density in frail elderly women. J Am Geriatr Soc 51(7):985–990PubMedCrossRefPubMedCentralGoogle Scholar
  69. Villareal DT, Aguirre L, Burke Gurney A et al (2017) Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med 376(20):1943–1955PubMedPubMedCentralCrossRefGoogle Scholar
  70. Warden SJ, Hurst JA, Sanders MS et al (2004) Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res 20:809–816PubMedCrossRefPubMedCentralGoogle Scholar
  71. Watson K, Baar K (2014) mTOR and the health benefits of exercise. Semin Cell Dev Biol 36:130–139PubMedCrossRefPubMedCentralGoogle Scholar
  72. Welsh L, Rutherford OM (1996) Hip bone mineral density is improved by high-impact aerobic exercise in postmenopausal women and men over 50 years. Eur J Appl Physiol Occup Physiol 74(6):511–517PubMedCrossRefPubMedCentralGoogle Scholar
  73. Wilkinson SB, Tarnopolsky MA, Grant EJ et al (2006) Hypertrophy with unilateral resistance exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol 98(6):546–555PubMedCrossRefPubMedCentralGoogle Scholar
  74. Wilson JM, Marin PJ, Rhea MR et al (2012) Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res 26(8):2293–2307PubMedCrossRefPubMedCentralGoogle Scholar
  75. World Health Organization (2007) WHO scientific group on the assessment of osteoporosis at primary health care level. World Health Organization, SheffieldGoogle Scholar
  76. World Health Organization (2009) Global health risks: mortality and burden of disease attributable to selected major risks.
  77. World Health Organization (2010) Global recommendations on physical activity for health. World Health Organization, GenevaGoogle Scholar
  78. Xiang X, Zhao J, Xu G et al (2011) mTOR and the differentiation of mesenchymal stem cells. Acta Biochim Biophys Sin 43(7):501–510PubMedCrossRefPubMedCentralGoogle Scholar
  79. Xu J, Lombardi G, Jiao W, Banfi G (2016) Effects of exercise on bone status in female subjects, from Young girls to postmenopausal women: an overview of systematic reviews and meta-analyses. Sports Med 46(8):1165–1182PubMedCrossRefPubMedCentralGoogle Scholar
  80. Yoon MS (2017) mTOR as a key regulator in maintaining skeletal muscle mass. Front Physiol 8:788PubMedPubMedCentralCrossRefGoogle Scholar
  81. Young N, Formica C, Szmuckler G et al (1994) Bone density at weight-bearing and nonweight bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab 78:449–454PubMedPubMedCentralGoogle Scholar
  82. Zamboni M, Mazzali G, Fantin F et al (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 18(5):388–395PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jacopo Antonino Vitale
    • 1
    Email author
  • Francesco Negrini
    • 1
  • Giuseppe Banfi
    • 1
  1. 1.IRCCS Orthopedic Institute GaleazziMilanItaly

Personalised recommendations