Advertisement

Genetics of Osteosarcopenia

  • Katerina Trajanoska
  • Fernando RivadeneiraEmail author
Chapter

Abstract

Osteoporosis and sarcopenia are common diseases of aging that are associated with high morbidity and mortality. They are inextricably linked by multitude of environmental and genetic factors, thus often co-exist in old frail people. The co-occurrence of osteoporosis and sarcopenia is known as osteosarcopenia. The recent advances across all fields of genetics have provide an opportunity to untangle the complex biological and molecular mechanisms underlying osteoporosis, sarcopenia or osteosarcopenia. To date more than 20 GWAS have been performed for different musculoskeletal parameters which have yielded a plenitude of associations containing genes implicated in the structure and function of the bone or muscle. Notably, several cross-phenotype (CP) associations have been found mapping to/near MC4R, FTO, MGMT, TCF4, TMEM18, LINC01104, PEX14, SLC8A1, TGFA. In addition, multivariate approaches which are more robust for assessing pleiotropy have underscored SREBF1 and METTL21C as novel genes with pleiotropic effects on bone and muscle mass. Although our knowledge on the genetic and molecular interplay between bone and muscle has tremendously increase over the past decade, the genetic landscape of osteosarcopenia is yet to be unraveled.

Keywords

Osteosarcopenia Genetics Osteoporosis Sarcopenia Aging GWAS Pleiotropy Bone Muscle 

References

  1. Abu-Amer Y (2013) NF-κB signaling and bone resorption. Osteoporos Int 24(9):2377–2386. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23468073. Accessed 16 Jan 2019PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahn JD et al (2006) Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology 147(7):3196–3202. Available at: https://academic.oup.com/endo/article-lookup/doi/10.1210/en.2006-0281. Accessed 27 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  3. Amthor H, Hoogaars WMH (2012) Interference with myostatin/ActRIIB signaling as a therapeutic strategy for Duchenne muscular dystrophy. Curr Gene Ther 12(3):245–259. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22554312. Accessed 28 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anon (2004) Office of the Surgeon General (US). Bone health and osteoporosis: a report of the Surgeon General. Rockville (MD): office of the Surgeon General (US); 2004. 6, Determinants of bone health. Available from: https://www.ncbi.nlm.nih.gov/books/NBK45503/
  5. Arden NK et al (2009) The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 11(4):530–534. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8992884. Accessed 21 Oct 2018CrossRefGoogle Scholar
  6. Arden NK, Spector TD (1997) Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 12(12):2076–2081. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9421240. Accessed 28 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arnold MA et al (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12(3):377–389. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17336904. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bialek P et al (2014) A myostatin and activin decoy receptor enhances bone formation in mice. Bone 60:162–171. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24333131. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  9. Binkley N, Buehring B (2009) Beyond FRAX®: it’s time to consider “sarco-osteopenia”. J Clin Densitom 12(4):413–416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19733110. Accessed 27 Dec 2018CrossRefGoogle Scholar
  10. Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer FACTOR-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14(1):167–196. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9891782. Accessed 16 Jan 2019PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bogl LH et al (2011) An investigation into the relationship between soft tissue body composition and bone mineral density in a young adult twin sample. J Bone Miner Res Off J Am Soc Bone Miner Res 26(1):79–87. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20658559. Accessed 28 Dec 2018CrossRefGoogle Scholar
  12. Boissel S et al (2009) Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 85(1):106–111. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19559399. Accessed 28 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  13. Braun TP et al (2012) Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system R. F. P. Bacurau, ed. PLoS One 7(7):e42183. Available at: https://dx.plos.org/10.1371/journal.pone.0042183. Accessed 27 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bulik-Sullivan B et al (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47(11):1236–1241. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26414676. Accessed 6 Sept 2018PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bush WS, Moore JH (2012) Chapter 11: genome-wide association studies. PLoS Comput Biol 8(12):e1002822. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23300413. Accessed 28 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  16. Caudill A et al (2010) Ankle strength and functional limitations in children and adolescents with type I osteogenesis imperfecta. Pediatr Phys Ther 22(3):288–295. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20699778. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  17. Church C et al (2009) A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene G. S. Barsh, ed. PLoS Genet 5(8):e1000599. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19680540. Accessed 28 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cloutier P et al (2013) A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity G. S. Barsh, ed. PLoS Genet 9(1):e1003210. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23349634. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  19. Curtis E et al (2015) Determinants of muscle and bone aging. J Cell Physiol 230(11):2618–2625. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25820482. Accessed 27 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dumont LM et al (2005) Evidence for direct actions of melanocortin peptides on bone metabolism. Peptides 26(10):1929–1935. Available at: https://www.sciencedirect.com/science/article/pii/S0196978105002391?via%3Dihub. Accessed 27 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  21. Duncan EL et al (2011) Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk G. Gibson, ed. PLoS Genet 7(4):e1001372. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21533022. Accessed 10 Sept 2018PubMedPubMedCentralCrossRefGoogle Scholar
  22. Elkasrawy MN, Hamrick MW (2010) Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact 10(1):56–63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20190380. Accessed 6 July 2018PubMedPubMedCentralGoogle Scholar
  23. Estrada K et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501PubMedPubMedCentralCrossRefGoogle Scholar
  24. Farooqi IS et al (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348(12):1085–1095. Available at: http://www.nejm.org/doi/abs/10.1056/NEJMoa022050. Accessed 27 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  25. Farooqi IS et al (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106(2):271–279. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10903343. Accessed 27 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  26. Forbes GB, Sauer EP, Weitkamp LR (1995) Lean body mass in twins. Metab Clin Exp 44(11):1442–1446. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7476332. Accessed 28 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  27. Frayling TM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science (New York, NY) 316(5826):889–894. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17434869. Accessed 28 Dec 2018CrossRefGoogle Scholar
  28. Frederiksen H et al (2002) Hand grip strength: a phenotype suitable for identifying genetic variants affecting mid- and late-life physical functioning. Genet Epidemiol 23(2):110–122. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12214305. Accessed 28 Dec 2018PubMedCrossRefGoogle Scholar
  29. Garatachea N, Lucía A (2013) Genes and the ageing muscle: a review on genetic association studies. Age 35(1):207–233. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22037866. Accessed 28 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  30. Garg G et al (2014) Variation in the MC4R gene is associated with bone phenotypes in elderly Swedish women J. Devaney, ed. PLoS One 9(2):e88565. Available at: http://dx.plos.org/10.1371/journal.pone.0088565. Accessed 27 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gentry BA et al (2010) Skeletal muscle weakness in osteogenesis imperfecta mice. Matrix Biol 29(7):638–644. Available at http://www.ncbi.nlm.nih.gov/pubmed/20619344. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  32. Girardet C, Butler AA (2014) Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta 1842(3):482–494. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23680515. Accessed 28 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gorski JP et al (2011) Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization. J Biol Chem 286(3):1836–1849. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21075843. Accessed 16 Jan 2019PubMedCrossRefPubMedCentralGoogle Scholar
  34. Guo Y-F et al (2013) Suggestion of GLYAT gene underlying variation of bone size and body lean mass as revealed by a bivariate genome-wide association study. Hum Genet 132(2):189–199. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23108985. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gupta M et al (2011) Identification of homogeneous genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associations. J Bone Miner Res 26(6):1261–1271. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21611967. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hackinger S, Zeggini E (2017) Statistical methods to detect pleiotropy in human complex traits. Open Biol 7(11):170125. Available at: http://www.ncbi.nlm.nih.gov/pubmed/29093210. Accessed 17 Jan 2019PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hamerman D (1997) Aging and the musculoskeletal system. Ann Rheum Dis 56(10):578–585. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9389217. Accessed 28 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  38. Huang J et al (2014) METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-κB signaling pathway. J Bone Miner Res 29(7):1531–1540. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24677265. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  39. Huo YR et al (2015) Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc 16(4):290–295. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25512216. Accessed 28 Dec 2018CrossRefGoogle Scholar
  40. Huvenne H et al (2016) Rare genetic forms of obesity: clinical approach and current treatments in 2016. Obes Facts 9(3):158–173. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27241181. Accessed 28 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  41. Karasik D, Cohen-Zinder M (2012) Osteoporosis genetics: year 2011 in review. BoneKEy Rep 1:114. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23951496. Accessed 10 Sept 2018PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kemp JP et al (2017) Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet 49(10):1468–1475. Available at: http://www.nature.com/doifinder/10.1038/ng.3949. Accessed 12 Feb 2018PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kilpeläinen TO et al (2011) Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 43(8):753–760. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21706003. Accessed 28 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  44. Landi F et al (2012) Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr 31(5):652–658. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22414775. Accessed 28 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  45. Liu XG et al (2009) Genome-wide Association and Replication Studies Identified TRHR as an Important Gene for Lean Body Mass. The American Journal of Human Genetics, 84(3), pp. 418–423. doi: 10.1016/j.ajhg.2009.02.004.PubMedCrossRefGoogle Scholar
  46. Locke AE et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538):197–206. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25673413. Accessed 21 Sept 2017PubMedPubMedCentralCrossRefGoogle Scholar
  47. Long YC et al (2011) Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol Cell Biol 31(3):430–441. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21135130. Accessed 28 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ma J et al (2017) The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos Int 28(2):597–608. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27774565. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  49. McMurray F et al (2013) Adult onset global loss of the Fto gene alters body composition and metabolism in the mouse M. H. Tschöp, ed. PLoS Genet 9(1):e1003166. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23300482. Accessed 28 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  50. Medina-Gomez C et al (2017) Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun 8(1):121. Available at: http://www.nature.com/articles/s41467-017-00108-3. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  51. Medina-Gomez C et al (2018) Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet 102(1):88–102. Available at: http://www.ncbi.nlm.nih.gov/pubmed/29304378. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mendias CL et al (2015) Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice. Aging Cell 14(4):704–706. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25808276. Accessed 16 Aug 2018PubMedPubMedCentralCrossRefGoogle Scholar
  53. Miska EA et al. (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. The EMBO Journal, 18(18), pp. 5099–5107. doi: 10.1093/emboj/18.18.5099.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Morris JA et al (2019) An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 51(2):258–266. Available at: http://www.nature.com/articles/s41588-018-0302-x. Accessed 12 Feb 2019PubMedCrossRefPubMedCentralGoogle Scholar
  55. Mosher DS et al (2007) A mutation in the Myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3(5):e79. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17530926. Accessed 16 Aug 2018PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mountjoy KG et al (2003) Melanocortin-4 receptor messenger ribonucleic acid expression in rat cardiorespiratory, musculoskeletal, and integumentary systems. Endocrinology 144(12):5488–5496. Available at: https://academic.oup.com/endo/article-lookup/doi/10.1210/en.2003-0570. Accessed 27 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  57. Movérare-Skrtic S et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20(11):1279–1288. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25306233. Accessed 21 Oct 2018PubMedPubMedCentralCrossRefGoogle Scholar
  58. Movérare-Skrtic S et al (2015) The bone-sparing effects of estrogen and WNT16 are independent of each other. Proc Natl Acad Sci USA 112(48):14972–14977. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26627248. Accessed 10 Sept 2018PubMedCrossRefGoogle Scholar
  59. Mughal MZ (2014) Fractures in children with cerebral palsy. Curr Osteoporos Rep 12(3):313–318. http://www.ncbi.nlm.nih.gov/pubmed/24964775. Accessed 6 July 2018PubMedCrossRefGoogle Scholar
  60. Nelson MR et al (2015) The support of human genetic evidence for approved drug indications. Nat Genet 47(8):856–860. Available at: http://www.nature.com/articles/ng.3314. Accessed 16 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  61. Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29(2):66–73. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23140989. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  62. Pocock NA et al (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Investig 80(3):706–710. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3624485. Accessed 25 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  63. Potthoff MJ et al (2007a) Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers. J Clin Investig 117(9):2459–2467. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17786239. Accessed 16 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  64. Potthoff MJ et al (2007b) Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c. Mol Cell Biol 27(23):8143–8151. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17875930. Accessed 16 Jan 2019PubMedPubMedCentralCrossRefGoogle Scholar
  65. Puolakkainen T et al (2017) Treatment with soluble activin type IIB-receptor improves bone mass and strength in a mouse model of Duchenne muscular dystrophy. BMC Musculoskelet Disord 18(1):20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28103859. Accessed 12 Mar 2019PubMedPubMedCentralCrossRefGoogle Scholar
  66. Qi L et al (2008) The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. Hum Mol Genet 17(22):3502–3508. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18697794. Accessed 28 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  67. Qin Y et al (2017) Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: a novel mechanism in muscle-bone communication. J Biol Chem 292(26):11021–11033. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28465350. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  68. Richards J et al (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371(9623):1505–1512. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18455228. Accessed 21 Oct 2018PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rivadeneira F et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41(11):1199–1206PubMedPubMedCentralCrossRefGoogle Scholar
  70. Rivadeneira F, Mäkitie O (2016) Osteoporosis and bone mass disorders: from gene pathways to treatments. Trends Endocrinol Metab 27(5):262–281. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27079517. Accessed 11 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  71. Sachse G et al (2018) FTO demethylase activity is essential for normal bone growth and bone mineralization in mice. Biochim Biophys Acta Mol basis Dis 1864(3):843–850. Available at: http://www.ncbi.nlm.nih.gov/pubmed/29203346. Accessed 27 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  72. Schousboe K et al (2004) Twin study of genetic and environmental influences on adult body size, shape and composition. Int J Obes 28(1):39–48. Available at: http://www.nature.com/articles/0802524. Accessed 28 Dec 2018CrossRefGoogle Scholar
  73. Slemenda CW et al (2009) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6(6):561–567. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1887818. Accessed 28 Dec 2018CrossRefGoogle Scholar
  74. Smith DM et al (1973) Genetic factors in determining bone mass. J Clin Investig 52(11):2800–2808. Available at: http://www.ncbi.nlm.nih.gov/pubmed/4795916. Accessed 25 Dec 2018PubMedCrossRefPubMedCentralGoogle Scholar
  75. Stephens AS et al (2011) Myocyte enhancer factor 2C, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization. J Biol Chem 286(34):30071–30086. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21652706. Accessed 16 Jan 2019PubMedPubMedCentralCrossRefGoogle Scholar
  76. Styrkarsdottir U et al (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358(22):2355–2365PubMedCrossRefPubMedCentralGoogle Scholar
  77. Sun L et al (2011) Bivariate genome-wide association analyses of femoral neck bone geometry and appendicular lean mass D. Zhu, ed. PLoS One 6(11):e27325. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22087292. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  78. Takken T et al (2004) Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I. J Pediatr 145(6):813–818. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15580207. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  79. Tanaka K-I et al (2018) FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci USA 115(16):E3759–E3768. Available at: http://www.ncbi.nlm.nih.gov/pubmed/29618611. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  80. Tikkanen E et al (2018) Biological insights into muscular strength: genetic findings in the UK biobank. Sci Rep 8(1):6451. Available at: http://www.nature.com/articles/s41598-018-24735-y. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  81. Timpson NJ et al (2009) How does body fat influence bone mass in childhood? A Mendelian randomization approach. J Bone Miner Res Off J Am Soc Bone Miner Res 24(3):522–533. Available at: http://doi.wiley.com/10.1359/jbmr.081109. Accessed 7 June 2017CrossRefGoogle Scholar
  82. Trajanoska K et al (2018) Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ (Clin Res Ed) 362:k3225. Available at: http://www.ncbi.nlm.nih.gov/pubmed/30158200. Accessed 4 Sept 2018CrossRefGoogle Scholar
  83. Trinh A et al (2017) Fractures in spina bifida from childhood to young adulthood. Osteoporos Int 28(1):399–406. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27553445. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  84. Veilleux L-N et al (2012) Abnormalities in muscle density and muscle function in hypophosphatemic rickets. J Clin Endocrinol Metab 97(8):E1492–E1498. Available at : http://www.ncbi.nlm.nih.gov/pubmed/22639288. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  85. Veilleux L-N et al (2013) The muscle-bone relationship in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 98(5):E990–E995. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23526465. Accessed 6 July 2018PubMedCrossRefPubMedCentralGoogle Scholar
  86. Wallner C et al (2017) Inhibition of GDF8 (Myostatin) accelerates bone regeneration in diabetes mellitus type 2. Sci Rep 7(1):9878. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28852138. Accessed 28 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  87. Warner JN (1952) A method for estimating heritability1. Agron J 44(8):427. Available at: https://www.agronomy.org/publications/aj/abstracts/44/8/AJ0440080427. Accessed 28 Dec 2018CrossRefGoogle Scholar
  88. Wiederstein JL et al (2018) Skeletal muscle-specific methyltransferase METTL21C trimethylates p97 and regulates autophagy-associated protein breakdown. Cell Rep 23(5):1342–1356. Available at: https://www.sciencedirect.com/science/article/pii/S2211124718305242#bib6. Accessed 16 Jan 2019PubMedCrossRefPubMedCentralGoogle Scholar
  89. Willems SM et al (2017) Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun 8:16015.  https://doi.org/10.1038/ncomms16015CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yang J et al. (2011) GCTA: a tool for genome-wide complex trait analysis. American journal of human genetics. Elsevier, 88(1), pp. 76–82. doi: 10.1016/j.ajhg.2010.11.011.PubMedCrossRefGoogle Scholar
  91. Yu R, Leung J, Woo J (2014) Incremental predictive value of sarcopenia for incident fracture in an elderly Chinese cohort: results from the osteoporotic fractures in men (MrOs) study. J Am Med Dir Assoc 15(8):551–558. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24703927. Accessed 28 Dec 2018PubMedCrossRefGoogle Scholar
  92. Zheng H et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zhong Q et al (2005) Multiple melanocortin receptors are expressed in bone cells. Bone 36(5):820–831. Available at: https://www.sciencedirect.com/science/article/pii/S8756328205000098?via%3Dihub. Accessed 27 Dec 2018PubMedCrossRefGoogle Scholar
  94. Zillikens MC et al (2017) Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun 8(1):80. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28724990. Accessed 6 July 2018PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Internal MedicineErasmus MC, University Medical CenterRotterdamThe Netherlands

Personalised recommendations