Advertisement

Mathematical Modeling of the Cerebrospinal Fluid Flow and Its Interactions

  • Lorenzo Sala
  • Fabrizia Salerni
  • Marcela SzoposEmail author
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

The present chapter provides an overview of mathematical models that describe the cerebrospinal fluid and its possible interactions with other biofluids or neighboring tissues. The description of the underlying mechanisms stems from the basic principles of fluid and solid dynamics and it is translated into systems of partial or ordinary differential equations. The current review aims at specifying a complementary view with respect to other revisions in the field by illustrating some selected studies that may constitute a first step in the connection between cerebral and ocular fluid dynamics.

First we present lumped-parameter models with a simplified mathematical structure that allow fast computations of the average values of the unknowns and capture the main behavior of the cerebral flow. The discussion then moves onto distributed models, which produce a three-dimensional representation of cerebrospinal fluid flows in complex geometries that may derive from medical imaging. These models allow the investigation of the fluid flow at fine scales, constituting a highly valuable tool in providing a better understanding of pathophysiology.

We acknowledge that significant efforts have already been made in the attempt to unify mathematics and medicine in the context of brain diseases caused by cerebrospinal fluid abnormalities; nevertheless, we report a pressing demand for innovative mathematical models that may achieve the complete description and simulation of the biophysical connections between the eye and the brain.

Keywords

Cerebrospinal flow Mathematical and computational modeling Reduced and distributed models Ocular flows 

References

  1. 1.
    Michael J Albeck, Svend E Børgesen, Flemming Gjerris, Jes F Schmidt, and Per Soelberg Sørensen. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. Journal of neurosurgery, 74(4):597–600, 1991.CrossRefGoogle Scholar
  2. 2.
    Khalid Ambarki, Olivier Baledent, Guy Kongolo, Robert Bouzerar, Sidy Fall, and Marc-Etienne Meyer. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE transactions on biomedical engineering, 54(3):483–491, 2007.CrossRefGoogle Scholar
  3. 3.
    ANSYS. Fluent: the most-powerful cfd tool available, empowering you to go further and faster as you optimize your product’s performance. https://www.ansys.com/Products/Fluids/ANSYS-Fluent, 2006.
  4. 4.
    Samuel Asanad, Fred N Ross-Cisneros, Ernesto Barron, Alec Chan Golston, Eric A Barron, and Alfredo A Sadun. Morphometric analysis of the retinal ganglion cell and inner plexiform layers in alzheimers disease: Biomarkers in the eye for degeneration in the brain. Investigative Ophthalmology & Visual Science, 59(9):5993–5993, 2018.Google Scholar
  5. 5.
    Cees JJ Avezaat and John HM van Eijndhoven. The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurgical review, 9(1-2):113–120, 1986.CrossRefGoogle Scholar
  6. 6.
    O. Baledent, M.C. Henry-Feugeas, and I. Idy-Peretti. Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Investigative radiology, 36(7):368–377, 2001.CrossRefGoogle Scholar
  7. 7.
    Olivier Balédent, Ilana Idy-peretti, et al. Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Investigative radiology, 36(7):368–377, 2001.CrossRefGoogle Scholar
  8. 8.
    Klaus-Jrgen Bathe. Adina-fsi 8.6: Automatic dynamic incremental nonlinear analysis. http://www.adina.com/, 1986.
  9. 9.
    ANDERS BILL. The uveal venous pressure. Archives of Ophthalmology, 69(6):780–782, 1963.CrossRefGoogle Scholar
  10. 10.
    HC Brinkman. On the permeability of media consisting of closely packed porous particles. Flow, Turbulence and Combustion, 1(1):81, 1949.Google Scholar
  11. 11.
    Richard F Brubaker. The effect of intraocular pressure on conventional outflow resistance in the enucleated human eye. Investigative ophthalmology & visual science, 14(4):286–292, 1975.Google Scholar
  12. 12.
    Joel Buishas, Ian G Gould, and Andreas A Linninger. A computational model of cerebrospinal fluid production and reabsorption driven by starling forces. Croatian medical journal, 55(5):481–497, 2014.CrossRefGoogle Scholar
  13. 13.
    Alexander C Bunck, Jan Robert Kroeger, Alena Juettner, Angela Brentrup, Barbara Fiedler, Gerard R Crelier, Bryn A Martin, Walter Heindel, David Maintz, Wolfram Schwindt, et al. Magnetic resonance 4d flow analysis of cerebrospinal fluid dynamics in chiari i malformation with and without syringomyelia. European radiology, 22(9):1860–1870, 2012.CrossRefGoogle Scholar
  14. 14.
    L Carichino, G Guidoboni, BA Siesky, A Amireskandari, I Januleviciene, and A Harris. Effect of intraocular pressure and cerebrospinal fluid pressure on the blood flow in the central retinal vessels. Integrated Multidisciplinary Approaches in the Study and Care of the Human Eye Kugler Publications, pages 59–66, 2014.Google Scholar
  15. 15.
    S. Cheng, E. Jacobson, and L.E. Bilston. Models of the pulsatile hydrodynamics of cerebrospinal fluid flow in the normal and abnormal intracranial system. Computer methods in biomechanics and biomedical engineering, 10(2):151–157, 2007.CrossRefGoogle Scholar
  16. 16.
    E Scott Conner, Lorraine Foley, and Peter McL Black. Experimental normal-pressure hydrocephalus is accompanied by increased transmantle pressure. Journal of neurosurgery, 61(2):322–327, 1984.CrossRefGoogle Scholar
  17. 17.
    Marek Czosnyka and John D Pickard. Monitoring and interpretation of intracranial pressure. Journal of Neurology, Neurosurgery & Psychiatry, 75(6):813–821, 2004.CrossRefGoogle Scholar
  18. 18.
    H Davson, G Hollingsworth, and MB Segal. The mechanism of drainage of the cerebrospinal fluid. Brain, 93(4):665–678, 1970.CrossRefGoogle Scholar
  19. 19.
    Jurre den Haan, Aleid van de Kreeke, Johannes de Boer, Femke Bouwman, and Frank D Verbraak. Optical coherence tomography angiography in amyloid proven alzheimers disease; a non-invasive biomarker? Investigative Ophthalmology & Visual Science, 59(9):724–724, 2018.Google Scholar
  20. 20.
    Ida Dielemans, Johannes R Vingerling, Douwe Algra, Albert Hofman, Diederick E Grobbee, and Paulus TVM de Jong. Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population: the rotterdam study. Ophthalmology, 102(1):54–60, 1995.CrossRefGoogle Scholar
  21. 21.
    Anders Eklund, Bo Lundkvist, L-OD Koskinen, and J Malm. Infusion technique can be used to distinguish between dysfunction of a hydrocephalus shunt system and a progressive dementia. Medical and Biological Engineering and Computing, 42(5):644–649, 2004.Google Scholar
  22. 22.
    DR Enzmann and NfsJ Pelc. Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine mr imaging. Radiology, 178(2):467–474, 1991.CrossRefGoogle Scholar
  23. 23.
    D.R. Enzmann and N.J. Pelc. Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine mr imaging. Radiology, 178(2):467–474, 1991.CrossRefGoogle Scholar
  24. 24.
    Andrew J Feola, Jerry G Myers, Julia Raykin, Lealem Mulugeta, Emily S Nelson, Brian C Samuels, and C Ross Ethier. Finite element modeling of factors influencing optic nerve head deformation due to intracranial pressure. Investigative ophthalmology & visual science, 57(4):1901–1911, 2016.CrossRefGoogle Scholar
  25. 25.
    Stefan E Fischer, GC McKinnon, SE Maier, and P Boesiger. Improved myocardial tagging contrast. Magnetic resonance in medicine, 30(2):191–200, 1993.CrossRefGoogle Scholar
  26. 26.
    Robert A Fishman et al. Cerebrospinal fluid in diseases of the nervous system. Saunders Philadelphia, 1992.Google Scholar
  27. 27.
    L. Formaggia, A. Quarteroni, and A. Veneziani. Cardiovascular mathematics, volume 1 of ms&a. modeling, simulation and applications, 2009.Google Scholar
  28. 28.
    Sigrid Friese, Uwe Klose, and Karsten Voigt. Zur pulsation des liquor cerebrospinalis. Klinische Neuroradiologie, 12(2):67–75, 2002.CrossRefGoogle Scholar
  29. 29.
    Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj Nyström, Adrian Pop, Levon Saldamli, and David Broman. The OpenModelica modeling, simulation, and development environment. In 46th Conference on Simulation and Modelling of the Scandinavian Simulation Society (SIMS2005), Trondheim, Norway, October 13–14, 2005, 2005.Google Scholar
  30. 30.
    Simon Garnotel, Stéphanie Salmon, and Olivier Balédent. Numerical modeling of the intracranial pressure using windkessel models. MathS In Action, 8:9–25, 01 2017.Google Scholar
  31. 31.
    Manuel Gehlen, Vartan Kurtcuoglu, and Marianne Schmid Daners. Is posture-related craniospinal compliance shift caused by jugular vein collapse? a theoretical analysis. Fluids and Barriers of the CNS, 14(1):5, 2017.Google Scholar
  32. 32.
    Katuhiko Goda. A multistep technique with implicit difference schemes for calculating two-or three-dimensional cavity flows. Journal of Computational Physics, 30(1):76–95, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    D. Greitz, A. Franck, and B. Nordell. On the pulsatile nature of intracranial and spinal csf-circulation demonstrated by mr imaging. Acta radiologica, 34(4):321–328, 1993.CrossRefGoogle Scholar
  34. 34.
    Giovanna Guidoboni, Alon Harris, Lucia Carichino, Yoel Arieli, and Brent A Siesky. Effect of intraocular pressure on the hemodynamics of the central retinal artery: a mathematical model. Mathematical Biosciences & Engineering, 11(3):523–546, 2014.Google Scholar
  35. 35.
    Giovanna Guidoboni, Alon Harris, Simone Cassani, Julia Arciero, Brent Siesky, Annahita Amireskandari, Leslie Tobe, Patrick Egan, Ingrida Januleviciene, and Joshua Park. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: A mathematical model to clarify their relationship and clinical relevance. Investigative Ophthalmology and Visual Science, 55(7):4105–4118, 2014.CrossRefGoogle Scholar
  36. 36.
    Giovanna Guidoboni, Fabrizia Salerni, Alon Harris, Christophe Prud’homme, Marcela Szopos, Peter M Pinsky, and Rodolfo Repetto. Ocular and cerebral hemo-fluid dynamics in microgravity: a mathematical model. Investigative Ophthalmology & Visual Science, 58(8):3036–3036, 2017.Google Scholar
  37. 37.
    Giovanna Guidoboni, Fabrizia Salerni, Rodolfo Repetto, Marcela Szopos, and Alon Harris. Relationship between intraocular pressure, blood pressure and cerebrospinal fluid pressure: a theoretical approach. Investigative Ophthalmology & Visual Science, 59(9):1665–1665, 2018.Google Scholar
  38. 38.
    JE Guinane. An equivalent circuit analysis of cerebrospinal fluid hydrodynamics. American Journal of Physiology-Legacy Content, 223(2):425–430, 1972.CrossRefGoogle Scholar
  39. 39.
    Sumeet Gupta, Michaela Soellinger, Peter Boesiger, Dimos Poulikakos, and Vartan Kurtcuoglu. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. Journal of biomechanical engineering, 131(2):021010, 2009.Google Scholar
  40. 40.
    Sumeet Gupta, Michaela Soellinger, Deborah M Grzybowski, Peter Boesiger, John Biddiscombe, Dimos Poulikakos, and Vartan Kurtcuoglu. Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. i. computational model. Journal of the Royal Society Interface, 7(49):1195–1204, 2010.CrossRefGoogle Scholar
  41. 41.
    GyroTools. Gtflow: software solution that delivers all the necessary functionality for visualization, assessment and interpretation of multidimensional mri phase-contrast flow datasets. http://www.gyrotools.com/products/gt-flow.html, 2012.
  42. 42.
    Edi Azali Hadzri, Kahar Osman, Mohamed Rafiq Abdul Kadir, and Azian Abdul Aziz. Computational investigation on csf flow analysis in the third ventricle and aqueduct of sylvius. IIUM Engineering Journal, 12(3), 2011.Google Scholar
  43. 43.
    John E Hall. Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences, 2015.Google Scholar
  44. 44.
    A. Harris, J. Gross, D. Prada, B. Siesky, A. C. Verticchio Vercellin, L. Saint, and G. Guidoboni. The relationship between cerebrospinal fluid pressure and blood flow in the retina and optic nerve. In Intraocular and Intracranial Pressure Gradient in Glaucoma (N. Wang). Springer, Singapore, 2019.CrossRefGoogle Scholar
  45. 45.
    Manuel Hasert, Kannan Masilamani, Simon Zimny, Harald Klimach, Jiaxing Qi, Jörg Bernsdorf, and Sabine Roller. Complex fluid simulations with the parallel tree-based lattice boltzmann solver musubi. Journal of Computational Science, 5(5):784–794, 2014.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Manuel Hasert and Sabine P Roller. Multi-scale lattice Boltzmann simulations on distributed octrees. Number RWTH-CONV-144063. German Research School for Simulation Sciences GmbH, 2014.Google Scholar
  47. 47.
    Frédéric Hecht. New development in freefem++. Journal of numerical mathematics, 20(3-4):251–266, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Anders Helgeland, Kent-Andre Mardal, Victor Haughton, and Bjørn Anders Pettersson Reif. Numerical simulations of the pulsating flow of cerebrospinal fluid flow in the cervical spinal canal of a chiari patient. Journal of biomechanics, 47(5):1082–1090, 2014.CrossRefGoogle Scholar
  49. 49.
    MC Henry-Feugeas, I Idy-Peretti, B Blanchet, D Hassine, G Zannoli, and E Schouman-Claeys. Temporal and spatial assessment of normal cerebrospinal fluid dynamics with mr imaging. Magnetic resonance imaging, 11(8):1107–1118, 1993.CrossRefGoogle Scholar
  50. 50.
    HDM Hettiarachchi, Ying Hsu, Timothy J Harris, and Andreas A Linninger. The effect of pulsatile flow on intrathecal drug delivery in the spinal canal. Annals of biomedical engineering, 39(10):2592, 2011.CrossRefGoogle Scholar
  51. 51.
    David W Holman, Vartan Kurtcuoglu, and Deborah M Grzybowski. Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. ii. in vitro arachnoid outflow model. Journal of The Royal Society Interface, page rsif20100032, 2010.Google Scholar
  52. 52.
    RM Hoogeveen. Quantitative flow measurement: accuracy and precision, spatial and temporal resolution. In Proceedings of the International Workshop on Flow and Motion. Zurich, 2004.Google Scholar
  53. 53.
    L. Howden, D. Giddings, and H. Power. Three-dimensional cerebrospinal fluid flow within the human central nervous system. Discrete and continuous dynamical systems, 2011.Google Scholar
  54. 54.
    Ying Hsu, HD Madhawa Hettiarachchi, David C Zhu, and Andreas A Linninger. The frequency and magnitude of cerebrospinal fluid pulsations influence intrathecal drug distribution: key factors for interpatient variability. Anesthesia & Analgesia, 115(2):386–394, 2012.CrossRefGoogle Scholar
  55. 55.
    Raad I Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of computational physics, 62(1):40–65, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    E. Jacobson, D.F. Fletcher, M.K. Morgan, and I.H. Johnston. Fluid dynamics of the cerebral aqueduct. Pediatric neurosurgery, 24(5):229–236, 1996.CrossRefGoogle Scholar
  57. 57.
    E. Jacobson, D.F. Fletcher, M.K. Morgan, and I.H. Johnston. Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis. Medical and Biological Engineering and Computing, 37(1):59–63, 1999.CrossRefGoogle Scholar
  58. 58.
    Erica E Jacobson, David F Fletcher, Michael K Morgan, and Ian H Johnston. Fluid dynamics of the cerebral aqueduct. Pediatric neurosurgery, 24(5):229–236, 1996.CrossRefGoogle Scholar
  59. 59.
    Kartik Jain, Geir Ringstad, Per-Kristian Eide, and Kent-André Mardal. Direct numerical simulation of transitional hydrodynamics of the cerebrospinal fluid in chiari i malformation–the role of cranio-vertebral junction. International journal for numerical methods in biomedical engineering, 2016.Google Scholar
  60. 60.
    MG Johnston, M Boulton, and M Flessner. Cerebrospinal fluid absorption revisited: do extracranial lymphatics play a role? The Neuroscientist, 6(2):77–87, 2000.CrossRefGoogle Scholar
  61. 61.
    Mariusz Kaczmarek, Ravi P Subramaniam, and Samuel R Neff. The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry. Bulletin of mathematical biology, 59(2):295–323, 1997.zbMATHCrossRefGoogle Scholar
  62. 62.
    George Kellie. An account with some reflections on the pathology of the brain. Edinburgh Med Chir Soc Trans, 1:84–169, 1824.Google Scholar
  63. 63.
    J. W. Kiel, M. Hollingsworth, R. Rao, M. Chen, and H. A. Reitsamer. Ciliary blood flow and aqueous humor production. Progress in retinal and eye research, 30(1):1–17, 2011.CrossRefGoogle Scholar
  64. 64.
    JW Kiel. Choroidal myogenic autoregulation and intraocular pressure. Experimental eye research, 58(5):529–543, 1994.CrossRefGoogle Scholar
  65. 65.
    JW Kiel and AP Shepherd. Autoregulation of choroidal blood flow in the rabbit. Investigative Ophthalmology and Visual Science, 33(8):2399–2410, 1992.Google Scholar
  66. 66.
    Dong-Joo Kim, Zofia Czosnyka, Nicole Keong, Danila K Radolovich, Peter Smielewski, Michael PF Sutcliffe, John D Pickard, and Marek Czosnyka. Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery, 64(3):494–502, 2009.CrossRefGoogle Scholar
  67. 67.
    H. Kim and et al. Porohyperelastic anatomical models for hydrocephalus and idiopathic intracranial hypertension. Journal of Neurosurgery, 2015.Google Scholar
  68. 68.
    Harald Klimach, Kartik Jain, and Sabine Roller. End-to-end parallel simulations with apes. In PARCO, pages 703–711, 2013.Google Scholar
  69. 69.
    Mary E Klingensmith et al. The Washington manual of surgery. Lippincott Williams & Wilkins, 2008.Google Scholar
  70. 70.
    HERMES A Kontos, ENOCH P Wei, RUDOLPH M Navari, JOSEPH E Levasseur, WI Rosenblum, and JL Patterson Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 234(4):H371–H383, 1978.CrossRefGoogle Scholar
  71. 71.
    S Kozerke, M Soellinger, M Oelhafen, C Baltes, and P Boesiger. Measurement accuracy: Eddy, maxwell and 3t. In Proceedings of the International Workshop on Flow and Motion. Zurich, 2004.Google Scholar
  72. 72.
    V. Kurtcuoglu. Biomechanics of the Brain, chapter 8: Computational fluid dynamics for the assessment of cerebrospinal fluid flow and its coupling with cerebral blood flow. Springer New York, 2011.Google Scholar
  73. 73.
    Vartan Kurtcuoglu, Michaela Soellinger, Paul Summers, Kevin Boomsma, Dimos Poulikakos, Peter Boesiger, and Yiannis Ventikos. Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of sylvius. Journal of biomechanics, 40(6):1235–1245, 2007.CrossRefGoogle Scholar
  74. 74.
    Vartan Kurtcuoglu, Michaela Soellinger, Paul Summers, Dimos Poulikakos, and Peter Boesiger. Mixing and modes of mass transfer in the third cerebral ventricle: a computational analysis. Journal of biomechanical engineering, 129(5):695–702, 2007.CrossRefGoogle Scholar
  75. 75.
    William D Lakin and Scott A Stevens. Modelling the response of intracranial pressure to microgravity environments. In Aspects of Mathematical Modelling, pages 211–227. Springer, 2008.Google Scholar
  76. 76.
    William D Lakin, Scott A Stevens, Bruce I Tranmer, and Paul L Penar. A whole-body mathematical model for intracranial pressure dynamics. Journal of mathematical biology, 46(4):347–383, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    RJ Last and DH Tompsett. Casts of the cerebral ventricles. British Journal of Surgery, 40(164):525–543, 1953.CrossRefGoogle Scholar
  78. 78.
    D.N. Levine. The pathogenesis of normal pressure hydrocephalus: a theoretical analysis. Bull Math Biol, 1999.Google Scholar
  79. 79.
    Xiaogai Li, Hans von Holst, and Svein Kleiven. Influences of brain tissue poroelastic constants on intracranial pressure (icp) during constant-rate infusion. Computer methods in biomechanics and biomedical engineering, 16(12):1330–1343, 2013.CrossRefGoogle Scholar
  80. 80.
    SO Linge, V Haughton, AE Løvgren, KA Mardal, and HP Langtangen. Csf flow dynamics at the craniovertebral junction studied with an idealized model of the subarachnoid space and computational flow analysis. American Journal of Neuroradiology, 31(1):185–192, 2010.CrossRefGoogle Scholar
  81. 81.
    A.A. Linniger, C. Tsakiris, D.C. Zhu, M. Xenos, P. Roycewicz, Z. Danziger, and R. Penn. Pulsatile cerebrospinal fluid flow in the normal and abnormal intrecranial system. IEEE Transaction on Biomedical Engineering, 2005.Google Scholar
  82. 82.
    A.A. Linniger, M. Xenos, D.C. Zhu, M.R. Somayaji, S. Kondapalli, and R.D. Penn. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Transactions on Biomedical Engineering, 54(2):291–302, 2007.CrossRefGoogle Scholar
  83. 83.
    Andreas A Linninger, Kevin Tangen, Chih-Yang Hsu, and David Frim. Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annual Review of Fluid Mechanics, 48:219–257, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Andreas A Linninger, Michalis Xenos, Brian Sweetman, Sukruti Ponkshe, Xiaodong Guo, and Richard Penn. A mathematical model of blood, cerebrospinal fluid and brain dynamics. Journal of mathematical biology, 59(6):729–759, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by the finite element method: The FEniCS book, volume 84. Springer Science & Business Media, 2012.zbMATHCrossRefGoogle Scholar
  86. 86.
    Anat London, Inbal Benhar, and Michal Schwartz. The retina as a window to the brainfrom eye research to cns disorders. Nature Reviews Neurology, 9(1):44, 2013.Google Scholar
  87. 87.
    GA Lyubimov, IN Moiseeva, and AA Stein. Dynamics of the intraocular fluid: Mathematical model and its main consequences. Fluid Dynamics, 42(5):684–694, 2007.zbMATHCrossRefGoogle Scholar
  88. 88.
    Brian Marek, Alon Harris, Priyanka Kanakamedala, Eric Lee, Annahita Amireskandari, Lucia Carichino, Giovanna Guidoboni, Leslie Abrams Tobe, and Brent Siesky. Cerebrospinal fluid pressure and glaucoma: regulation of trans-lamina cribrosa pressure. British Journal of Ophthalmology, pages bjophthalmol–2013, 2013.Google Scholar
  89. 89.
    Anthony Marmarou, Kenneth Shulman, and James Lamorgese. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. Journal of neurosurgery, 43(5):523–534, 1975.CrossRefGoogle Scholar
  90. 90.
    Anthony Marmarou, Kenneth Shulman, and Roberto M Rosende. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. Journal of neurosurgery, 48(3):332–344, 1978.CrossRefGoogle Scholar
  91. 91.
    MathWorkds. <matlab2015a. https://fr.mathworks.com/products/matlab.html, 2015.
  92. 92.
    M McAuliffe. Medical image processing, analysis, and visualization (mipav). National Institutes of Health, 4(0), 2009.Google Scholar
  93. 93.
    James Wilson Millen and David Henry Morgan Woollam. The anatomy of the cerebrospinal fluid. Oxford University Press, 1962.Google Scholar
  94. 94.
    Paul Mitchell, Anne J Lee, Jie Jin Wang, and Elena Rochtchina. Intraocular pressure over the clinical range of blood pressure: blue mountains eye study findings. American journal of ophthalmology, 140(1):131–132, 2005.CrossRefGoogle Scholar
  95. 95.
    Alexander Monro. Observations on the structure and functions of the nervous system. 1783.Google Scholar
  96. 96.
    Emily S Nelson, Lealem Mulugeta, Andrew Feola, Julia Raykin, Jerry G Myers, Brian C Samuels, and C Ross Ethier. The impact of ocular hemodynamics and intracranial pressure on intraocular pressure during acute gravitational changes. Journal of Applied Physiology, 123(2):352–363, 2017.CrossRefGoogle Scholar
  97. 97.
    Materialise NV. Mimics: advanced segmentation toolbox for patient specific-device design or medical image-based research and development. http://www.materialise.com/en/medical/software/mimics, 2010.
  98. 98.
    University of North Carolina at Chapel Hill. Gambit: end-to-end application allowing group-wise automatic mesh-based analysis of cortical thickness as well as other surface area measurements. https://www.nitrc.org/projects/gambit/, 2010.
  99. 99.
    Hae-Young Lopilly Park, Hye-Young Shin, Kyoung In Jung, and Chan Kee Park. Changes in the lamina and prelamina after intraocular pressure reduction in patients with primary open-angle glaucoma and acute primary angle-closure. Investigative ophthalmology & visual science, 55(1):233–239, 2014.CrossRefGoogle Scholar
  100. 100.
    R.K. Parkkola, M.E. Komu, T.M. Aarimaa, M.S. Alanen, and C. Thomsen. Cerebrospinal fluid flow in children with normal and dilated ventricles studied by mr imaging. Acta radiologica, 42(1):33–38, 2001.CrossRefGoogle Scholar
  101. 101.
    R Price, S Gady, K Heinemann, ES Nelson, L Mulugeta, CR Ethier, BC Samuels, A Feola, J Vera, and JG Myers. An integrated model of the cardiovascular and central nervous systems for analysis of microgravity induced fluid redistribution. 2015.Google Scholar
  102. 102.
    Jiaxing Qi, Kartik Jain, Harald Klimach, and Sabine Roller. Performance evaluation of the lbm solver musubi on various hpc architectures. In PARCO, pages 807–816, 2015.Google Scholar
  103. 103.
    A. Quarteroni, A. Veneziani, and C. Vergara. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Computer Methods in Applied Mechanics and Engineering, 302:193 – 252, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Sara Qvarlander, Khalid Ambarki, Anders Wåhlin, Johan Jacobsson, Richard Birgander, Jan Malm, and Anders Eklund. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta neurologica Scandinavica, 135(5):576–584, 2017.CrossRefGoogle Scholar
  105. 105.
    Sara Qvarlander, Bo Lundkvist, Lars-Owe D Koskinen, Jan Malm, and Anders Eklund. Pulsatility in csf dynamics: pathophysiology of idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry, 84(7):735–741, 2013.Google Scholar
  106. 106.
    Sara Qvarlander, Nina Sundström, Jan Malm, and Anders Eklund. Postural effects on intracranial pressure: modeling and clinical evaluation. Journal of Applied Physiology, 115(10):1474–1480, 2013.CrossRefGoogle Scholar
  107. 107.
    Ruojin Ren, Jost B Jonas, Guoghong Tian, Yi Zhen, Ke Ma, Shuning Li, Hongtao Wang, Bin Li, Xiaojun Zhang, and Ningli Wang. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology, 117(2):259–266, 2010.CrossRefGoogle Scholar
  108. 108.
    Catherine Bowes Rickman. Brain and retinal degenerative diseases: Is there a common thread? Paper presentation at the Annual Meeting of ARVO, 2017.Google Scholar
  109. 109.
    Jarl Risberg, Nils Lundberg, and David H Ingvar. Regional cerebral blood volume during acute transient rises of the intracranial pressure (plateau waves). Journal of neurosurgery, 31(3):303–310, 1969.CrossRefGoogle Scholar
  110. 110.
    G Rutkowska, V Haughton, S Linge, and K-A Mardal. Patient-specific 3d simulation of cyclic csf flow at the craniocervical region. American Journal of Neuroradiology, 33(9):1756–1762, 2012.CrossRefGoogle Scholar
  111. 111.
    Gabriela Marta Rutkowska. Computational fluid dynamics in patient-specific models of normal and chiari i geometries. Master’s thesis, 2011.Google Scholar
  112. 112.
    Riccardo Sacco, Aurelio G Mauri, Alessandra Cardani, Brent A Siesky, Giovanna Guidoboni, and Alon Harris. Multiscale modeling and simulation of neurovascular coupling in the retina. Journal for Modeling in Ophthalmology, 2(2):30–35, 2018.Google Scholar
  113. 113.
    Lorenzo Sala, Christophe Prud’homme, Giovanna Guidoboni, Marcela Szopos, Brent A Siesky, and Alon Harris. Analysis of iop and csf alterations on ocular biomechanics and lamina cribrosa hemodynamics. Investigative Ophthalmology & Visual Science, 59(9):4475–4475, 2018.Google Scholar
  114. 114.
    Lorenzo Sala, Christophe Prud’Homme, Marcela Szopos, and Giovanna Guidoboni. Towards a full model for ocular biomechanics, fluid dynamics, and hemodynamics. Journal for Modeling in Ophthalmology, 2(2):7–13, 2018.Google Scholar
  115. 115.
    Lorenzo Sala, Riccardo Sacco, and Giovanna Guidoboni. Multiscale nature of ocular physiology. Journal for Modeling in Ophthalmology, 2(1):12–18, 2018.Google Scholar
  116. 116.
    F. Salerni, R. Repetto, A. Harris, P. Pinsky, C. Prud’homme, M. Szopos, and G. Guidoboni. Biofluid modeling of the coupled eye-brain system and insights into simulated microgravity conditions, PLoS One, 14(8):e0216012, 2019.Google Scholar
  117. 117.
    Fabrizia Salerni, Rodolfo Repetto, Alon Harris, Peter Pinsky, Christophe Prudhomme, Marcela Szopos, and Giovanna Guidoboni. Mathematical modeling of ocular and cerebral hemo-fluid dynamics: application to viip. Journal for Modeling in Ophthalmology, 2(2):64–68, 2018.Google Scholar
  118. 118.
    B Sallerin-Caute, Y Lazorthes, B Monsarrat, J Cros, and R Bastide. Csf baclofen levels after intrathecal administration in severe spasticity. European journal of clinical pharmacology, 40(4):363–365, 1991.CrossRefGoogle Scholar
  119. 119.
    Flow Science. Flow3d: complete and versatile cfd simulation platform for engineers investigating the dynamic behavior of liquids and gas in a wide range of industrial applications and physical processes. https://www.flow3d.com/, 1980.
  120. 120.
    Kenneth Shapiro and Anthony Marmarou. Clinical applications of the pressure-volume index in treatment of pediatric head injuries. Journal of neurosurgery, 56(6):819–825, 1982.CrossRefGoogle Scholar
  121. 121.
    David M Silver and Orna Geyer. Pressure-volume relation for the living human eye. Current eye research, 20(2):115–120, 2000.CrossRefGoogle Scholar
  122. 122.
    Arthur J Sit, Cherie B Nau, Jay W McLaren, Douglas H Johnson, and David Hodge. Circadian variation of aqueous dynamics in young healthy adults. Investigative ophthalmology & visual science, 49(4):1473–1479, 2008.CrossRefGoogle Scholar
  123. 123.
    Alan Smillie, Ian Sobey, and Zoltan Molnar. A hydroelastic model of hydrocephalus. Journal of Fluid Mechanics, 539:417–443, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Ian Sobey and Benedikt Wirth. Effect of non-linear permeability in a spherically symmetric model of hydrocephalus. Mathematical Medicine and Biology, 23(4):339–361, 2006.zbMATHCrossRefGoogle Scholar
  125. 125.
    F. Staglberg, J. Mogelvang, C. Thomsen, B. Nordell, M. Stubgaard, and A. Ericsson. A method for mr quantification of flow velocities in blood and csf using interleaved gradient-echo pulse sequences. Magnetic resonance imaging, 7(6):655–667, 1989.CrossRefGoogle Scholar
  126. 126.
    Detlev Stalling, Malte Westerhoff, and Hans-Christian Hege. Amira: a highly interactive system for visual data analysis, 2005.Google Scholar
  127. 127.
    Scott A Stevens, William D Lakin, and Wolfgang Goetz. A differentiable, periodic function for pulsatile cardiac output based on heart rate and stroke volume. Mathematical Biosciences, 182(2):201–211, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Karen-Helene Støverud, Hans Petter Langtangen, Geir Andre Ringstad, Per Kristian Eide, and Kent-Andre Mardal. Computational investigation of cerebrospinal fluid dynamics in the posterior cranial fossa and cervical subarachnoid space in patients with chiari i malformation. PloS one, 11(10):e0162938, 2016.CrossRefGoogle Scholar
  129. 129.
    HG Sullivan and JD Allison. Physiology of cerebrospinal fluid. Neurosurgery, 3:2125–2135, 1985.Google Scholar
  130. 130.
    B. Sweetman and A.A. Linniger. Cerebrospinal fluid flow dynamics in the central nervous system. Annals of biomedical engineering, 39(1):484–496, 2011.CrossRefGoogle Scholar
  131. 131.
    M. Szopos, S. Cassani, G. Guidoboni, C. Prud’homme, R. Sacco, B. Siesky, and A. Harris. Mathematical modeling of aqueous humor flow and intraocular pressure under uncertainty: towards individualized glaucoma management. Journal for Modeling in Ophthalmology, 1(2):29–39, 2016.Google Scholar
  132. 132.
    Yukio Tada and Tatsuya Nagashima. Modeling and simulation of brain lesions by the finite-element method. IEEE Engineering in Medicine and Biology Magazine, 13(4):497–503, 1994.CrossRefGoogle Scholar
  133. 133.
    Kevin M Tangen, Ying Hsu, David C Zhu, and Andreas A Linninger. Cns wide simulation of flow resistance and drug transport due to spinal microanatomy. Journal of biomechanics, 48(10):2144–2154, 2015.CrossRefGoogle Scholar
  134. 134.
    Minoru Tomita, H Naritomi, and WD Heiss. Cerebral Hyperemia and Ischemia, from the Standpoint of Cerebral Blood Volume: Proceedings of the Statellite Symposium, Brain Section, Fourth World Congress for Microcirculation, Osaka, Japan, 1-2 August 1987. Elsevier, 1988.Google Scholar
  135. 135.
    B. Tully and Y. Ventikos. Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. Journal of Fluid Mechanics, 2011.Google Scholar
  136. 136.
    Mauro Ursino. A mathematical study of human intracranial hydrodynamics part 1 – the cerebrospinal fluid pulse pressure. Annals of biomedical engineering, 16(4):379–401, 1988.CrossRefGoogle Scholar
  137. 137.
    Mauro Ursino. A mathematical study of human intracranial hydrodynamics part 2 – simulation of clinical tests. Annals of biomedical engineering, 16(4):403–416, 1988.CrossRefGoogle Scholar
  138. 138.
    Mauro Ursino and Patrizia Di Giammarco. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: The generation of plateau waves. Annals of Biomedical Engineering, 19(1):15–42, Jan 1991.CrossRefGoogle Scholar
  139. 139.
    Mauro Ursino and Carlo Alberto Lodi. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. Journal of Applied Physiology, 82(4):1256–1269, 1997.CrossRefGoogle Scholar
  140. 140.
    Kristian Valen-Sendstad, A Logg, Kent-A Mardal, H Narayanan, and M Mortensen. A comparison of some common finite element schemes for the incompressible navier-stokes equations. Automated Scientific Computing (Logg, Mardal, Wells et al), preliminary draft, 2010.Google Scholar
  141. 141.
    J.C. Vardakis, D. Chou, B.J. Tully, C.C. Hung, T.H. Lee, P.H. Tsui, and Y. Ventikos. Investigating cerebral oedema using poroelasticity. Medical engineering and physics, 2016.Google Scholar
  142. 142.
    J.C. Vardakis, B.J. Tully, and Y. Ventikos. Computer Models in biomechanics, chapter Multicompartmental poroelasticity as a platform for the integrative modeling of water transport in the brain. Netherlands, Springer, 2013.Google Scholar
  143. 143.
    J.C. Vardakis, B.J. Tully, and Y. Ventikos. Exploring the efficacy of endoscopic ventriculostomy for hydrocephalus treatment via a multicompartmental poroelastic model of csf transport: a computational perspective. PLoS One, 2013.Google Scholar
  144. 144.
    Frank M White. Fluid mechanics, 3rd. NewYork, McGraw H çœ , 1994.Google Scholar
  145. 145.
    Benedikt Wirth and Ian Sobey. An axisymmetric and fully 3d poroelastic model for the evolution of hydrocephalus. Mathematical Medicine and Biology, 23(4):363–388, 2006.zbMATHCrossRefGoogle Scholar
  146. 146.
    Liang Xu, Han Wang, Yaxing Wang, and Jost B Jonas. Intraocular pressure correlated with arterial blood pressure: the beijing eye study. American journal of ophthalmology, 144(3):461–462, 2007.CrossRefGoogle Scholar
  147. 147.
    Mokhtar Zagzoule and Jean-Pierre Marc-Vergnes. A global mathematical model of the cerebral circulation in man. Journal of biomechanics, 19(12):1015–1022, 1986.CrossRefGoogle Scholar
  148. 148.
    David C Zhu, Michalis Xenos, Andreas A Linninger, and Richard D Penn. Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains. Journal of Magnetic Resonance Imaging, 24(4):756–770, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lorenzo Sala
    • 1
  • Fabrizia Salerni
    • 2
  • Marcela Szopos
    • 3
    Email author
  1. 1.IRMA, UMR CNRS 7501Université de StrasbourgStrasbourgFrance
  2. 2.Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
  3. 3.MAP5, UMR CNRS 8145Université Paris DescartesParisFrance

Personalised recommendations