Vitreous Imaging

  • Adam T. Chin
  • Caroline R. BaumalEmail author
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The anatomy of the vitreous and the vitreoretinal interface is important to understand its role in various disease states. However, the transparent nature of the vitreous presents a unique challenge for characterization of its anatomy. This chapter explores the techniques utilized to image the vitreous including slit lamp biomicroscopy, optical coherence tomography (OCT), B-scan ultrasonography, magnetic resonance imaging (MRI), and in vitro techniques. An overview of these technologies with their clinical applications is highlighted.


  1. 1.
    Diseases of the vitreo-macular interface. New York: Springer; 2013.Google Scholar
  2. 2.
    Read SP, Fortun JA. Visualization of the retina and vitreous during vitreoretinal surgery: new technologies. Curr Opin Ophthalmol. 2017;28(3):238-241.CrossRefGoogle Scholar
  3. 3.
    Yanoff M, Duker JS, Augsburger JJ. Ophthalmology. 2nd ed. St. Louis, MO: Mosby; 2004.Google Scholar
  4. 4.
    Sebag J. Vitreous: the resplendent enigma. Br J Ophthalmol. 2009;93(8):989-991.CrossRefGoogle Scholar
  5. 5.
    Sebag J. The vitreous: structure, function, and pathobiology. New York: Springer-Verlag; 1989.Google Scholar
  6. 6.
    Foos RY, Wheeler NC. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology. 1982;89(12):1502-1512.CrossRefGoogle Scholar
  7. 7.
    Vitreous: in health and disease. New York: Springer; 2014.Google Scholar
  8. 8.
    Haddock LJ, Kim DY, Mukai S. Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes. J Ophthalmol. 2013;2013:518479.CrossRefGoogle Scholar
  9. 9.
    Sharma S, Walker R, Brown GC, Cruess AF. The importance of qualitative vitreous examination in patients with acute posterior vitreous detachment. Arch Ophthalmol. 1999;117(3):343-346.CrossRefGoogle Scholar
  10. 10.
    Silverman RH. Focused ultrasound in ophthalmology. Clin Ophthalmol. 2016;10:1865-1875.CrossRefGoogle Scholar
  11. 11.
    Ossoinig KC. Echographic detection and classification of posterior hyphemas. Ophthalmologica. 1984;189(1-2):2-11.CrossRefGoogle Scholar
  12. 12.
    Ossoinig KC. Modern examination methods of orbital disease. A-scan echography of the orbit. Trans Am Acad Ophthalmol Otolaryngol. 1974;78(4):OP581-586.Google Scholar
  13. 13.
    Oksala A, Lehtinen A. Investigations on the structure of the vitreous body by ultrasound. Am J Ophthalmol. 1958;46(3 Pt 1):361-366.CrossRefGoogle Scholar
  14. 14.
    Webb S. The Physics of medical imaging. Bristol; Philadelphia: Hilger; 1988.Google Scholar
  15. 15.
    Sebag J. To see the invisible: the quest of imaging vitreous. Dev Ophthalmol. 2008;42:5-28.Google Scholar
  16. 16.
    Chu TG, Lopez PF, Cano MR, et al. Posterior vitreoschisis. An echographic finding in proliferative diabetic retinopathy. Ophthalmology. 1996;103(2):315-322.CrossRefGoogle Scholar
  17. 17.
    Mamou J, Wa CA, Yee KM, et al. Ultrasound-based quantification of vitreous floaters correlates with contrast sensitivity and quality of life. Invest Ophthalmol Vis Sci. 2015;56(3):1611-1617.CrossRefGoogle Scholar
  18. 18.
    Stringer CEA, Ahn JS, Kim DJ. Asteroid Hyalosis: A Mimic of Vitreous Hemorrhage on Point of Care Ultrasound. CJEM. 2017;19(4):317-320.Google Scholar
  19. 19.
    Woo MY, Hecht N, Hurley B, Stitt D, Thiruganasambandamoorthy V. Test characteristics of point-of-care ultrasonography for the diagnosis of acute posterior ocular pathology. Can J Ophthalmol. 2016;51(5):336-341.CrossRefGoogle Scholar
  20. 20.
    Manna S, Banerjee RK, Augsburger JJ, Al-Rjoub MF, Correa ZM. Ultrasonographical assessment of implanted biodegradable device for long-term slow release of methotrexate into the vitreous. Exp Eye Res. 2016;148:30-32.CrossRefGoogle Scholar
  21. 21.
    Pavlin CJ, Foster FS. Ultrasound biomicroscopy in glaucoma. Acta Ophthalmol Suppl. 1992(204):7-9.CrossRefGoogle Scholar
  22. 22.
    Bhende M, Agraharam SG, Gopal L, et al. Ultrasound biomicroscopy of sclerotomy sites after pars plana vitrectomy for diabetic vitreous hemorrhage. Ophthalmology. 2000;107(9):1729-1736.CrossRefGoogle Scholar
  23. 23.
    Hodjatjalali K, Riazi M, Faghihi H, Khorami A. Ultrasound biomicroscopy study of vitreous incarceration subsequent to intravitreal injections. Can J Ophthalmol. 2012;47(1):24-27.CrossRefGoogle Scholar
  24. 24.
    Helvaci S, Sahinoglu-Keskek N, Kiziloglu M, Oksuz H, Cevher S. Vitreous incarceration after ranibizumab injection: an ultrasound biomicroscopy study. Ophthalmic Surg Lasers Imaging Retina. 2015;46(4):471-474.CrossRefGoogle Scholar
  25. 25.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254(5035):1178-1181.CrossRefGoogle Scholar
  26. 26.
    Yaqoob Z, Wu J, Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques. 2005;39(6 Suppl):S6-13.CrossRefGoogle Scholar
  27. 27.
    Lavinsky F, Lavinsky D. Novel perspectives on swept-source optical coherence tomography. Int J Retina Vitreous. 2016;2:25.Google Scholar
  28. 28.
    Barak Y, Ihnen MA, Schaal S. Spectral domain optical coherence tomography in the diagnosis and management of vitreoretinal interface pathologies. J Ophthalmol. 2012;2012:876472.CrossRefGoogle Scholar
  29. 29.
    Kagemann L, Wollstein G, Ishikawa H, et al. Persistence of Cloquet's canal in normal healthy eyes. Am J Ophthalmol. 2006;142(5):862-864.CrossRefGoogle Scholar
  30. 30.
    Uchino E, Uemura A, Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol. 2001;119(10):1475-1479.CrossRefGoogle Scholar
  31. 31.
    Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol. 2010;149(3):371-382 e371.CrossRefGoogle Scholar
  32. 32.
    Chang LK, Fine HF, Spaide RF, Koizumi H, Grossniklaus HE. Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. Am J Ophthalmol. 2008;146(1):121-127.CrossRefGoogle Scholar
  33. 33.
    Koizumi H, Spaide RF, Fisher YL, Freund KB, Klancnik JM, Jr., Yannuzzi LA. Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;145(3):509-517.CrossRefGoogle Scholar
  34. 34.
    Kicova N, Bertelmann T, Irle S, Sekundo W, Mennel S. Evaluation of a posterior vitreous detachment: a comparison of biomicroscopy, B-scan ultrasonography and optical coherence tomography to surgical findings with chromodissection. Acta Ophthalmol. 2012;90(4):e264-268.CrossRefGoogle Scholar
  35. 35.
    Sreekantam S, Macdonald T, Keane PA, Sim DA, Murray PI, Denniston AK. Quantitative analysis of vitreous inflammation using optical coherence tomography in patients receiving sub-Tenon's triamcinolone acetonide for uveitic cystoid macular oedema. Br J Ophthalmol. 2017;101(2):175-179.CrossRefGoogle Scholar
  36. 36.
    Keane PA, Karampelas M, Sim DA, et al. Objective measurement of vitreous inflammation using optical coherence tomography. Ophthalmology. 2014;121(9):1706-1714.CrossRefGoogle Scholar
  37. 37.
    Keane PA, Balaskas K, Sim DA, et al. Automated Analysis of Vitreous Inflammation Using Spectral-Domain Optical Coherence Tomography. Transl Vis Sci Technol. 2015;4(5):4.Google Scholar
  38. 38.
    Pang CE, Freund KB, Engelbert M. Enhanced vitreous imaging technique with spectral-domain optical coherence tomography for evaluation of posterior vitreous detachment. JAMA Ophthalmol. 2014;132(9):1148-1150.CrossRefGoogle Scholar
  39. 39.
    Alasil T, Adhi M, Liu JJ, Fujimoto JG, Duker JS, Baumal CR. Spectral-domain and swept-source OCT imaging of asteroid hyalosis: a case report. Ophthalmic Surg Lasers Imaging Retina. 2014;45(5):459-461.CrossRefGoogle Scholar
  40. 40.
    Adhi M, Badaro E, Liu JJ, et al. Three-Dimensional Enhanced Imaging of Vitreoretinal Interface in Diabetic Retinopathy Using Swept-Source Optical Coherence Tomography. Am J Ophthalmol. 2016;162:140-149 e141.CrossRefGoogle Scholar
  41. 41.
    Liu JJ, Witkin AJ, Adhi M, et al. Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography. PLoS One. 2014;9(7):e102950.CrossRefGoogle Scholar
  42. 42.
    Jongebloed WL, Worst JF. The cisternal anatomy of the vitreous body. Doc Ophthalmol. 1987;67(1-2):183-196.CrossRefGoogle Scholar
  43. 43.
    Li D, Kishi S, Itakura H, Ikeda F, Akiyama H. Posterior precortical vitreous pockets and connecting channels in children on swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(4):2412-2416.CrossRefGoogle Scholar
  44. 44.
    Itakura H, Kishi S, Li D, Akiyama H. En face imaging of posterior precortical vitreous pockets using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56(5):2898-2900.CrossRefGoogle Scholar
  45. 45.
    Itakura H, Kishi S. Alterations of posterior precortical vitreous pockets with positional changes. Retina. 2013;33(7):1417-1420.CrossRefGoogle Scholar
  46. 46.
    Simha A, Irodi A, David S. Magnetic resonance imaging for the ophthalmologist: a primer. Indian J Ophthalmol. 2012;60(4):301-310.CrossRefGoogle Scholar
  47. 47.
    Gonzalez RG, Cheng HM, Barnett P, et al. Nuclear magnetic resonance imaging of the vitreous body. Science. 1984;223(4634):399-400.CrossRefGoogle Scholar
  48. 48.
    Aguayo J, Glaser B, Mildvan A, Cheng HM, Gonzalez RG, Brady T. Study of vitreous liquifaction by NMR spectroscopy and imaging. Invest Ophthalmol Vis Sci. 1985;26(5):692-697.Google Scholar
  49. 49.
    Schueler AO, Hosten N, Bechrakis NE, et al. High resolution magnetic resonance imaging of retinoblastoma. Br J Ophthalmol. 2003;87(3):330-335.CrossRefGoogle Scholar
  50. 50.
    Potter PD, Shields CL, Shields JA, Flanders AE. The role of magnetic resonance imaging in children with intraocular tumors and simulating lesions. Ophthalmology. 1996;103(11):1774-1783.CrossRefGoogle Scholar
  51. 51.
    Li CD, Meltzer DE. Case 206: persistent hypertrophic primary vitreous. Radiology. 2014;271(3):921-925.CrossRefGoogle Scholar
  52. 52.
    Muir ER, Zhang Y, San Emeterio Nateras O, Peng Q, Duong TQ. Human vitreous: MR imaging of oxygen partial pressure. Radiology. 2013;266(3):905-911.CrossRefGoogle Scholar
  53. 53.
    Dunn JF. MR oximetry. Methods Mol Biol. 2011;771:227-240.Google Scholar
  54. 54.
    Li SK, Hao J, Liu H, Lee JH. MRI study of subconjunctival and intravitreal injections. J Pharm Sci. 2012;101(7):2353-2363.CrossRefGoogle Scholar
  55. 55.
    Raju HB, Hu Y, Padgett KR, Rodriguez JE, Goldberg JL. Investigation of nanoparticles using magnetic resonance imaging after intravitreal injection. Clin Exp Ophthalmol. 2012;40(1):100-107.CrossRefGoogle Scholar
  56. 56.
    Meral I, Bilgili Y. Diffusion changes in the vitreous humor of the eye during aging. AJNR Am J Neuroradiol. 2011;32(8):1563-1566.CrossRefGoogle Scholar
  57. 57.
    Piccirelli M, Bergamin O, Landau K, Boesiger P, Luechinger R. Vitreous deformation during eye movement. NMR Biomed. 2012;25(1):59-66.CrossRefGoogle Scholar
  58. 58.
    Simpson AR, Dowell NG, Jackson TL, Tofts PS, Hughes EH. Measuring the effect of pars plana vitrectomy on vitreous oxygenation using magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2013;54(3):2028-2034.CrossRefGoogle Scholar
  59. 59.
    Sebag J, Balazs EA. Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci. 1989;30(8):1867-1871.Google Scholar
  60. 60.
    Sebag J, Balazs EA. Human vitreous fibres and vitreoretinal disease. Trans Ophthalmol Soc U K. 1985;104 (Pt 2):123-128.Google Scholar
  61. 61.
    Worst JG. Cisternal systems of the fully developed vitreous body in the young adult. Trans Ophthalmol Soc U K. 1977;97(4):550-554.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology/Vitreoretinal Surgery, New England Eye CenterTufts University School of MedicineBostonUSA

Personalised recommendations