Advertisement

Morphological and Physiological Adaptations for Browsing and Grazing

  • Daryl CodronEmail author
  • Reinhold R. Hofmann
  • Marcus Clauss
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 239)

Abstract

Woody plants and grasses are two functionally distinct food groups that pose different mechanical, nutritional, and ecological challenges to herbivores. Accordingly, herbivores have evolved an array of morphological, physiological, and behavioural life history traits that reflect each species’ primary dietary niche. The prevalence of convergences across distantly related groups is evidence that many of these traits are adaptive. Most evaluations are, however, necessarily correlational, and so the functional relevance of many traits is still being debated. The last 2 decades has seen the emergence of larger, more representative, and quantitative datasets, which, along with statistical developments in evolutionary biology, means that a revised set of analyses is warranted. In this chapter we present a collection of updated datasets for almost 100 anatomical and physiological characteristics from 188 species. These data are subjected to phylogenetically-constrained analyses of relationships with diet niches (using %grass in the diet as a niche indicator). Results of these analyses highlight not only the extraordinary amount of convergence within this animal group, but also the constraints that morpho-physiology places on diet niches. To separate correlation from functional significance, we advocate an approach that considers the correlations between traits as part of each species’ “bauplan”, and highlight how this approach has already been used to link trends and outliers with mechanism in various datasets. While some questions about functional relevance require experimental manipulations that will almost certainly never be realized, synergies between experimental and correlational analyses are rapidly changing our understanding of how foraging adaptations, from locating and biting, to chewing and digesting food, have shaped the evolutionary diversification of mammal herbivores.

References

  1. Ackermans NL et al (2018) Controlled feeding experiments with diets of different abrasiveness reveal slow development of mesowear signal in goats (Capra aegagrus hircus). J Exp Biol 221:186411CrossRefGoogle Scholar
  2. Aitchison J (1946) Hinged teeth in mammals: a study of the tusks of muntjacs (Muntiacus) and Chinese water deer (Hydropotes inermis). Proc Zool Soc Lond 116:329–338CrossRefGoogle Scholar
  3. Archer D, Sanson G (2002) Form and function of the selenodont molar in southern African ruminants in relation to their feeding habits. J Zool 257:13–26.  https://doi.org/10.1017/S0952836902000614 CrossRefGoogle Scholar
  4. Austin PJ, Suchar LA, Robbins CT, Hagermann AE (1989) Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. J Chem Ecol 15:1335–1347CrossRefGoogle Scholar
  5. Avgar T, Street G, Fryxell JM (2014) On the adaptive benefits of mammal migration. Can J Zool 92:481–490.  https://doi.org/10.1139/cjz-2013-0076 CrossRefGoogle Scholar
  6. Baker G, Jones LHP, Wardrop ID (1959) Cause of wear in sheep’s teeth. Nature 184:1583–1584CrossRefGoogle Scholar
  7. Bell RHV (1971) A grazing ecosystem in the Serengeti. Sci Am 225:86–93CrossRefGoogle Scholar
  8. Benvenutti MA, Gordon IJ, Poppi DP (2006) The effect of the density and physical properties of grass stems on the foraging behaviour and instantaneous intake rate by cattle grazing an artificial reproductive tropical sward. Grass Forage Sci 61:272–281.  https://doi.org/10.1111/j.1365-2494.2006.00531.x CrossRefGoogle Scholar
  9. Brashares JS, Garland T, Arcese P (2000) Phylogenetic analysis of coadaptation in behavior, diet, and body size in the African antelope. Behav Ecol 11:452–463CrossRefGoogle Scholar
  10. Burnham KP, Anderson DR (2001) Kullback-Leibler information as a basis for strong inference in ecological studies. Wildl Res 28:111–119CrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  12. Cerling TE, Harris JM, Passey BH (2003) Diets of east African Bovidae based on stable isotope analysis. J Mammal 84:456–470CrossRefGoogle Scholar
  13. Cerling TE, Harris JM, Leakey MG (2005) Environmentally driven dietary adaptations in African mammals. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals and ecosystems. Springer, New York, pp 258–272Google Scholar
  14. Cerling TE et al (2015) Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 ma. Proc Natl Acad Sci U S A 112:11467–11472.  https://doi.org/10.1073/pnas.1513075112 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chivers DJ, Hladik CM (1980) Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J Morphol 166:337–386CrossRefGoogle Scholar
  16. Clauss M, Hofmann RR (2014) The digestive system of ruminants, and peculiarities of (wild) cattle. In: Melletti M, Burton J (eds) Ecology, evolution and behaviour of wild cattle: implications for conservation. Cambridge University Press, Cambridge, pp 57–62CrossRefGoogle Scholar
  17. Clauss M, Hummel J (2017) Physiological adaptations of ruminants and their potential relevance for production systems. Rev Bras Zootec 46:606–613CrossRefGoogle Scholar
  18. Clauss M, Lechner-Doll M (2001) Differences in selective reticulo-ruminal particle retention as a key factor in ruminant diversification. Oecologia 129:321–327CrossRefGoogle Scholar
  19. Clauss M, Lechner-Doll M, Behrend A, Lason K, Lang D, Streich WJ (2001) Particle retention in the forestomach of a browsing ruminant, the roe deer (Capreolus capreolus). Acta Theriol 46:103–107Google Scholar
  20. Clauss M, Lechner-Doll M, Streich WJ (2002) Faecal particle size distribution in captive wild ruminants: an approach to the browser/grazer-dichotomy from the other end. Oecologia 131:343–349CrossRefGoogle Scholar
  21. Clauss M et al (2003a) The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 136:14–27CrossRefGoogle Scholar
  22. Clauss M, Lechner-Doll M, Streich WJ (2003b) Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. A reevaluation of an old debate and a new hypothesis. Oikos 102:253–262CrossRefGoogle Scholar
  23. Clauss M et al (2006) The macroscopic anatomy of the omasum of free-ranging moose (Alces alces) and muskoxen (Ovibos moschatus) and a comparison of the omasal laminal surface area in 34 ruminant species. J Zool 270:346–358CrossRefGoogle Scholar
  24. Clauss M, Hofmann RR, Streich WJ, Fickel J, Hummel J (2008a) Higher masseter muscle mass in grazing than in browsing ruminants. Oecologia 157:377–385CrossRefGoogle Scholar
  25. Clauss M, Kaiser TM, Hummel J (2008b) The morphophysiological adaptations of browsing and grazing mammals. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Springer, Heidelberg, pp 149–178Google Scholar
  26. Clauss M et al (2009a) Physical characteristics of rumen contents in two small ruminants of different feeding type, the mouflon (Ovis ammon musimon) and the roe deer (Capreolus capreolus). Zoology 112:195–205CrossRefGoogle Scholar
  27. Clauss M et al (2009b) Physical characteristics of rumen contents in four large ruminants of different feeding type, the addax (Addax nasomaculatus), bison (Bison bison), red deer (Cervus elaphus) and moose (Alces alces). Comp Biochem Physiol A Mol Integr Physiol 152:398–406CrossRefGoogle Scholar
  28. Clauss M, Hofmann RR, Fickel J, Streich WJ, Hummel J (2009c) The intraruminal papillation gradient in wild ruminants of different feeding types: implications for rumen physiology. J Morphol 270:929–942CrossRefGoogle Scholar
  29. Clauss M, Nunn C, Fritz J, Hummel J (2009d) Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores. Comp Biochem Physiol A Mol Integr Physiol 154:376–382CrossRefGoogle Scholar
  30. Clauss M, Hofmann RR, Streich WJ, Fickel J, Hummel J (2010a) Convergence in the macroscopic anatomy of the reticulum in wild ruminant species of different feeding types and a new resulting hypothesis on reticular function. J Zool 281:26–38CrossRefGoogle Scholar
  31. Clauss M, Hume ID, Hummel J (2010b) Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4:979–992CrossRefGoogle Scholar
  32. Clauss M et al (2011a) The effect of size and density on the mean retention time of particles in the reticulorumen of cattle (Bos primigenius f. taurus), muskoxen (Ovibos moschatus) and moose (Alces alces). Br J Nutr 105:634–644CrossRefGoogle Scholar
  33. Clauss M, Müller K, Fickel J, Streich WJ, Hatt J-M, Südekum K-H (2011b) Macroecology of the host determines microecology of endobionts: protozoal faunas vary with wild ruminant feeding type and body mass. J Zool 283:169–185CrossRefGoogle Scholar
  34. Clauss M, Steuer P, Müller DWH, Codron D, Hummel J (2013) Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8:e68714CrossRefPubMedPubMedCentralGoogle Scholar
  35. Clauss M et al (2015) Faecal particle size: digestive physiology meets herbivore diversity. Comp Biochem Physiol A Mol Integr Physiol 179:182–191CrossRefGoogle Scholar
  36. Clauss M et al (2017) Reconstruction of body cavity volume in terrestrial tetrapods. J Anat (Lond) 230:325–336CrossRefGoogle Scholar
  37. Codron D (In review) Evolution of large mammal herbivores. In: Scogings P (ed) Herbivores and woody plants in savannas. WileyGoogle Scholar
  38. Codron D, Clauss M (2010) Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species. Can J Zool 88:1129–1138CrossRefGoogle Scholar
  39. Codron J, Lee-Thorp JA, Sponheimer M, Codron D, Grant RC, De Ruiter DJ (2006) Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: spatial and landscape differences. J Mammal 87:27–34CrossRefGoogle Scholar
  40. Codron D, Lee-Thorp JA, Sponheimer M, Codron J, de Ruiter D, Brink JS (2007) Significance of diet type and diet quality for ecological diversity of African ungulates. J Anim Ecol 76:526–537CrossRefGoogle Scholar
  41. Codron D, Brink JS, Rossouw L, Clauss M (2008a) The evolution of ecological specialization in southern African ungulates: competition or physical environmental turnover? Oikos 117:344–353CrossRefGoogle Scholar
  42. Codron D et al (2008b) Functional differentiation of African grazing ruminants: an example of specialized adaptations to very small changes in diet. Biol J Linn Soc 94:755–764CrossRefGoogle Scholar
  43. Codron D, Codron J, Sponheimer M, Clauss M (2016) Within-population isotopic niche variability in savanna mammals: disparity between carnivores and herbivores. Front Ecol Evol 4:15.  https://doi.org/10.3389/fevo.2016.00015 CrossRefGoogle Scholar
  44. Copeland SR, Sponheimer M, Spinage CA, Lee-Thorp JA, Codron D, Reed KE (2009) Stable isotope evidence for impala Aepyceros melampus diets at Akagera National Park. Rwanda Afr J Ecol 47:490–501CrossRefGoogle Scholar
  45. Damuth J, Janis CM (2011) On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biol Rev (Camb) 86:733–758CrossRefGoogle Scholar
  46. Demment MW, Longhurst WH (1987) Browsers and grazers: constraints on feeding ecology imposd by gut morphology and body size. Proceedings of the IVth international conference on goats. Brazilia, Brazil, pp 989–1004Google Scholar
  47. Dittmann MT et al (2015) Digesta kinetics in gazelles in comparison to other ruminants: evidence for taxon-specific rumen fluid throughput to adjust digesta washing to the natural diet. Comp Biochem Physiol A Mol Integr Physiol 185:58–68.  https://doi.org/10.1016/j.cbpa.2015.01.013 CrossRefPubMedGoogle Scholar
  48. Dittmann MT, Kreuzer M, Runge U, Clauss M (2017) Ingestive mastication in horses resembles rumination but not ingestive mastication in cattle and camels. J Exp Zool A Ecol Integr Physiol 327:98–109PubMedGoogle Scholar
  49. du Toit JT (1990) Feeding-height stratification among African browsing ruminants. Afr J Ecol 28:55–61CrossRefGoogle Scholar
  50. Duncan P, Foose TJ, Gordon IJ, Gakahu CG, Lloyd M (1990) Comparative nutrient extraction from forages by grazing bovids and equids: a test of the nutritional model of equid/bovid competition and coexistence. Oecologia 84:411–418CrossRefGoogle Scholar
  51. Duncan P, Tixier H, Hofmann RR, Lechner-Doll M (1998) Feeding strategies and the physiology of digestion in roe deer. In: Andersen R, Duncan P, Linell JDC (eds) The European roe deer: the biology of success. Scandinavian University Press, Oslo, pp 91–116Google Scholar
  52. Ecker M, Brink JS, Rossouw L, Chazan M, Horwitz LK, Lee-Thorp JA (2018) The palaeoecological context of the Oldowan-Acheulean in southern Africa. Nat Ecol Evol.  https://doi.org/10.1038/s41559-018-0560-0
  53. Erickson KL (2014) Prairie grass phytolith hardness and the evolution of ungulate hypsodonty. Hist Biol 26:737–744CrossRefGoogle Scholar
  54. Eronen JT, Evans AR, Fortelius M, Jernvall J (2009) The impact of regional climate on the evolution of mammals: a case study using fossil horses. Evolution 64:398–408CrossRefGoogle Scholar
  55. Eronen JT et al (2010) Precipitation and large herbivorous mammals II: application to fossil data. Evol Ecol Res 12:235–248Google Scholar
  56. Feranec RS (2003) Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiol 29:230–242CrossRefGoogle Scholar
  57. Feranec RS (2007) Ecological generalization during adaptive radiation: evidence from Neogene mammals. Evol Ecol Res 9:555–577Google Scholar
  58. Fickel J, Göritz F, Joest BA, Hildebrandt T, Hofmann RR, Breves G (1998) Analysis of parotid and mixed saliva in roe deer (Capreolus capreolus L.). J Comp Physiol B 168:257–264CrossRefGoogle Scholar
  59. Fletcher TM, Janis CM, Rayfield EJ (2010) Finite element analysis of ungulate jaws: can mode of digestive physiology be determined? Palaeontol Electron 13:21AGoogle Scholar
  60. Fleurance G, Fritz H, Duncan P, Gordon IJ, Edouard N, Vial C (2009) Instantaneous intake rate in horses of different body sizes: influence of sward biomass and fibrousness. Appl Anim Behav Sci 117:84–92CrossRefGoogle Scholar
  61. Fortelius M (1985) Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zool Fenn 180:1–76Google Scholar
  62. Fortelius M, Solounias N (2000) Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. Am Mus Novit 3301:1–36CrossRefGoogle Scholar
  63. Fowler ME (1983) Plant poisoning in free-living wild animals: a review. J Wildl Dis 19:34–43CrossRefGoogle Scholar
  64. Franz R, Hummel J, Müller DWH, Bauert M, Hatt J-M, Clauss M (2011) Herbivorous reptiles and body mass: effects on food intake, digesta retention, digestibility and gut capacity, and a comparison with mammals. Comp Biochem Physiol A Mol Integr Physiol 158:94–101CrossRefGoogle Scholar
  65. Fraser D, Rybczynski N (2014) Complexity of ruminant masticatory evolution. J Morphol 275:1093–1102CrossRefGoogle Scholar
  66. Fraser D, Theodor JM (2011) Comparing ungulate dietary proxies using discriminant function analysis. J Morphol 272:1513–1526.  https://doi.org/10.1002/jmor.11001 CrossRefPubMedGoogle Scholar
  67. Fritz J, Hummel J, Kienzle E, Arnold C, Nunn C, Clauss M (2009a) Comparative chewing efficiency in mammalian herbivores. Oikos 118:1623–1632CrossRefGoogle Scholar
  68. Fritz SA, Bininda-Emonds ORP, Purvis A (2009b) Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol Lett 12:538–549CrossRefGoogle Scholar
  69. Fritz J, Hummel J, Keinzle E, Streich WJ, Clauss M (2010) To chew or not to chew: faecal particle size in herbivorous reptiles and mammals. J Exp Zool A Ecol Integr Physiol 313:579–586CrossRefGoogle Scholar
  70. Garland TJ, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 218:3015–3035CrossRefGoogle Scholar
  71. Gordon IJ (2003) Browsing and grazing ruminants: are they different beasts? For Ecol Manag 181:13–21CrossRefGoogle Scholar
  72. Gordon IJ, Illius AW (1988) Incisor arcade structure and diet selection in ruminants. Funct Ecol 2:15–22CrossRefGoogle Scholar
  73. Gordon IJ, Illius AW (1994) The functional significance of the browser-grazer dichotomy in African ruminants. Oecologia 98:167–175CrossRefGoogle Scholar
  74. Gordon IJ, Illius AW (1996) The nutritional ecology of African ruminants: a reinterpretation. J Anim Ecol 65:18–28CrossRefGoogle Scholar
  75. Greaves W (1991) A relationship between premolar loss and jaw elongation in selenodont artiodactyls. Zool J Linnean Soc 101:121–129CrossRefGoogle Scholar
  76. Gross JE, Hobbs NT, Wunder BA (1993) Independent variables for predicting intake rate of mammalian herbivores: biomass density, plant density, or bite size? Oikos 68:75–81CrossRefGoogle Scholar
  77. Gwynne MD, Bell RHV (1968) Selection of vegetation components by grazing ungulates in the Serengeti National Park. Nature 220:390.  https://doi.org/10.1038/220390a0 CrossRefPubMedGoogle Scholar
  78. Hagermann AE, Robbins CT (1993) Specifity of tannin-binding salivary proteins relative to diet selection by mammals. Can J Zool 71:628–633CrossRefGoogle Scholar
  79. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  80. Hemae KM (1967) Masticatory function in the mammals. J Dent Res 46:883–893CrossRefGoogle Scholar
  81. Henderson G et al (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:14567CrossRefPubMedPubMedCentralGoogle Scholar
  82. Hendrichs H (1965) Vergleichende Untersuchung des Wiederkauverhaltens. Biol Zentralbl 84:681–751Google Scholar
  83. Herring SW (1985) Morphological correlates of masticatory patterns in peccaries and pigs. J Mammal 66:603–617CrossRefGoogle Scholar
  84. Heywood JJN (2010a) Explaining patterns in modern ruminant diversity: contingency or constraint? Biol J Linn Soc 99:657–672CrossRefGoogle Scholar
  85. Heywood JJN (2010b) Functional anatomy of bovid upper molar occlusal surfaces with respect to diet. J Zool 281:1–11CrossRefGoogle Scholar
  86. Hodson MJ, White PJ, MEad A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046CrossRefPubMedPubMedCentralGoogle Scholar
  87. Hoffman JM, Fraser D, Clementz MT (2015) Controlled feeding trials with ungulates: a new application of in vivo dental molding to assess the abrasive factors of microwear. J Exp Biol 218:1538–1547CrossRefGoogle Scholar
  88. Hofmann RR (1973) The ruminant stomach. East African Literature Bureau, NairobiGoogle Scholar
  89. Hofmann RR (1988) Morphological evolutionary adaptations of the ruminant digestive system. In: Dobson A, Dobson MJ (eds) Aspects of digestive physiology in ruminants. Comstock Publishing Associates, Cornell University Press, Ithaca, NYGoogle Scholar
  90. Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457CrossRefGoogle Scholar
  91. Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach-structure and feeding habit of east African ruminants. Mammalia 36:226–240CrossRefGoogle Scholar
  92. Hofmann RR, Streich WJ, Fickel J, Hummel J, Clauss M (2008) Convergent evolution in feeding types: salivary gland mass differences in wild ruminant species. J Morphol 269:240–257CrossRefGoogle Scholar
  93. Hummel J, Südekum K-H, Streich WJ, Clauss M (2006) Forage fermentation patterns and their implications for herbivore ingesta retention times. Funct Ecol 20:989–1002CrossRefGoogle Scholar
  94. Hummel J et al (2008) Differences in fecal particle size between free-ranging and captive individuals of two browser species. Zoo Biol 27:70–77CrossRefGoogle Scholar
  95. Hummel J et al (2009) Physical characteristics of reticuloruminal contents of cattle in relation to forage type and time after feeding. J Anim Physiol Anim Nutr 93:209–220CrossRefGoogle Scholar
  96. Hummel J et al (2011) Another one bites the dust: faecal silica levels in large herbivores correlate with high-crowned teeth. Proc R Soc Lond B Biol Sci 278:1742–1747.  https://doi.org/10.1098/rspb.2010.1939 CrossRefGoogle Scholar
  97. Hummel J, Hammer S, Hammer C, Ruf J, Lechenne M, Clauss M (2015) Solute and particle retention in a small grazing antelope, the blackbuck (Antilope cervicapra). Comp Biochem Physiol A Mol Integr Physiol 182:22–26CrossRefGoogle Scholar
  98. Hutchinson GE (1959) Homage to Santa Rosalia, or why are there so many kinds of animals? Am Nat XCIII(870):137–145Google Scholar
  99. Janis CM (1976) The evolutionary strategy of the Equidae and the origins of rumen and caecal digestion. Evolution 30:757–774CrossRefGoogle Scholar
  100. Janis CM (1988) An estimation of tooth volume and hypsodonty indices in ungulate mammals and the correlation of these factors with dietary preferences. In: Russell DE, Santoro J-P, Signogneau-Russell D (eds) Teeth revisited. Proceedings of the VIIth international symposium on dental morphology. Mémoires du Muséum national d'Histoire Naturelle, Paris (serie C), vol 53, pp 367–387Google Scholar
  101. Janis CM (1995) Correlations between craniodental morphology and feeding behavior in ungulates: reciprocal illumination between living and fossil taxa. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 76–98Google Scholar
  102. Janis CM (2008) An evolutionary history of browsing and grazing ungulates. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Springer, Heidelberg, pp 21–45CrossRefGoogle Scholar
  103. Janis CM, Constable E (1993) Can ungulate craniodental features determine digestive physiology? J Vertebr Paleontol 13:43AGoogle Scholar
  104. Janis CM, Ehrhardt D (1988) Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zool J Linnean Soc 92:267–284CrossRefGoogle Scholar
  105. Janis CM, Gordon IJ, Illius AW (1994) Modelling equid/ruminant competition in the fossil record. Hist Biol 8:15–29CrossRefGoogle Scholar
  106. Janis CM, Damuth J, Theodor JM (2000) Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proc Natl Acad Sci U S A 97:7899–7904CrossRefPubMedPubMedCentralGoogle Scholar
  107. Janis CM, Constable EC, Houpt KA, Streich WJ, Clauss M (2010) Comparative ingestive mastication in domestic horses and cattle: a pilot investigation. J Anim Physiol Anim Nutr 94:e402–e409.  https://doi.org/10.1111/j.1439-0396.2010.01030.x CrossRefGoogle Scholar
  108. Jernvall J, Hunter JP, Fortelius M (1996) Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science 274:1489–1492CrossRefGoogle Scholar
  109. Kaiser TM, Fickel J, Streich WJ, Hummel J, Clauss M (2010) Enamel ridge alignment in upper molars of ruminants in relation to their natural diet. J Zool 281:12–25CrossRefGoogle Scholar
  110. Kaiser DP, Müller DWH, Fortelius M, Schulze E, Codron D, Clauss M (2013) Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Rev 43:34–46.  https://doi.org/10.1111/j.1365-2907.2011.00203.x CrossRefGoogle Scholar
  111. Karasov WH, Martínez del Rio C (2007) Physiological ecology: how animals process energy, nutrients, and toxins. Princeton University Press, Princeton, NJGoogle Scholar
  112. Karme A, Rannikko J, Kallonen A, Clauss M, Fortelius M (2016) Mechanical modelling of tooth wear. J R Soc Interface 13.  https://doi.org/10.1098/rsif.2016.0399
  113. Kelly KE, Sinclair BR (1989) Size and structure of leaf and stalk components of digesta regurgitated for rumination in sheep offered five forage diets. N Z J Agric Res 32:365–374CrossRefGoogle Scholar
  114. Kiltie RA (1981) The function of interlocking canines in rain forest peccaries (Tayassuidae). J Mammal 62:459–469CrossRefGoogle Scholar
  115. Lajeunesse MJ (2009) Meta-analysis and the comparative phylogenetic method. Am Nat 174:369–381CrossRefGoogle Scholar
  116. Lauper M et al (2013) Rumination of different-sized particles in muskoxen (Ovibos moschatus) and moose (Alces alces) on grass and browse diets, and implications for rumination in different ruminant feeding types. Mamm Biol 78:142–152CrossRefGoogle Scholar
  117. Lazagabaster IA, Rowan J, Kamilar JM, Reed KE (2016) Evolution of craniodental correlates of diet in African Bovidae. J Mamm Evol 23:385–396CrossRefGoogle Scholar
  118. Lechner I et al (2009) No ‘bypass’ in adult ruminants: passage of fluid ingested vs. fluid inserted into the rumen in fistulated muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces). Comp Biochem Physiol A Mol Integr Physiol 154:151–156CrossRefGoogle Scholar
  119. Lechner I et al (2010) Differential passage of fluids and different-sized particles in fistulated oxen (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces): rumen particle size discrimination is independent from contents stratification. Comp Biochem Physiol A Mol Integr Physiol 155:211–222CrossRefGoogle Scholar
  120. Lechner-Doll M, Kaske M, von Engelhardt W (1991) Factors affecting the mean retention time of particles in the forestomach of ruminants and camelids. In: Tsuda T, Sasaki Y, Kawashima R (eds) Physiological aspects of digestion and metabolism in ruminants. Academic, San Diego, CA, pp 455–482CrossRefGoogle Scholar
  121. Louys J, Faith JT (2015) Phylogenetic topology mapped onto dietary ecospace reveals multiple pathways in the evolution of the herbivorous niche in African Bovidae. J Zool Syst Evol Res 53:140–154CrossRefGoogle Scholar
  122. Lucas PW et al (2013) Mechanisms and causes of wear in tooth enamel: implications for hominin diets. J R Soc Interface 10:2012.0923CrossRefGoogle Scholar
  123. Macandza VA, Owen-Smith N, Cross PC (2004) Forage selection by African buffalo in the late dry season in two landscapes. S Afr J Wildl Res 34:113–121Google Scholar
  124. Mainland IL (2003) Dental microwear in grazing and browsing Gotland sheep (Ovis aries) and it implications for dietary reconstruction. J Archaeol Sci 30:1513–1527CrossRefGoogle Scholar
  125. Marchand P, Redjadj C, Garel M, Cugnasse J-M, Maillard D, Loison A (2013) Are mouflon (Ovis gmelini musimon) really grazers? A review of variation in diet composition. Mamm Rev 43:275–291CrossRefGoogle Scholar
  126. Martin SA, Alhajeri BH, Steppan SJ (2016) Dietary adaptations in the teeth of murine rodents (Muridae): a test of biomechanical predictions. Biol J Linn Soc 119:766–784CrossRefGoogle Scholar
  127. McLeod MN, Minson DJ (1988) Large particle breakdown by cattle eating ryegrass and alfalfa. J Anim Sci 66:992–999CrossRefGoogle Scholar
  128. Meier AR, Schmuck U, Meloro C, Clauss M, Hofmann RR (2016) Convergence of macroscopic tongue anatomy in ruminants and scaling relationships with body mass or tongue length. J Morphol 277:351–362CrossRefGoogle Scholar
  129. Mendoza M, Palmqvist P (2006) Characterizing adaptive morphological patterns related to diet in Bovidae (Mammalia: Artiodactyla). Acta Zool Sin 52:988–1008Google Scholar
  130. Mendoza M, Palmqvist P (2008) Hypsodonty in ungulates: an adaptation for grass consumption or for foraging in open habitat? J Zool 274:134–142CrossRefGoogle Scholar
  131. Mendoza M, Janis CM, Palmqvist P (2002) Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. J Zool 258:223–246CrossRefGoogle Scholar
  132. Merceron G et al (2016) Untangling the environmental from the dietary: dust does not matter. Proc R Soc Lond B Biol Sci 283:20161032CrossRefGoogle Scholar
  133. Meyer K, Hummel J, Clauss M (2010) The relationship between forage cell wall content and voluntary food intake in mammalian herbivores. Mammal Rev 40:221–245.  https://doi.org/10.1111/j.1365-2907.2010.00161.x CrossRefGoogle Scholar
  134. Mihlbachler MC, Campbell D, Ayoub M, Chen C, Ghani I (2016) Comparative dental microwear of ruminant and perissodactyl molars: implications for paleodietary analysis of rare and extinct ungulate clades. Paleobiology 42:98–116CrossRefGoogle Scholar
  135. Mlambo V, Marume U, Gajana CS (2015) Utility of the browser’s behavioural and physiological strategies in coping with dietary tannins: are exogenous tannin-inactivating treatments necessary? S Afr J Anim Sci 45:441–451CrossRefGoogle Scholar
  136. Mortolaa JP, Lanthier C (2005) Breathing frequency in ruminants: a comparative analysis with non-ruminant mammals. Respir Physiol Neurobiol 145:265–277CrossRefGoogle Scholar
  137. Müller DWH et al (2011) Phylogenetic constraints on digesta separation: variation in fluid throughput in the digestive tract in mammalian herbivores. Comp Biochem Physiol A Mol Integr Physiol 160:207–220.  https://doi.org/10.1016/j.cbpa.2011.06.004 CrossRefPubMedGoogle Scholar
  138. Müller DWH et al (2013) Assessing the Jarman–Bell principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp Biochem Physiol A Mol Integr Physiol 164:129–140CrossRefGoogle Scholar
  139. Müller J et al (2014) Growth and wear of incisor and cheek teeth in domestic rabbits (Oryctolagus cuniculus) fed diets of different abrasiveness. J Exp Zool 321A:283–298CrossRefGoogle Scholar
  140. Müller J et al (2015) Tooth length and incisal wear and growth in Guinea pigs (Cavia porcellus) fed diets of different abrasiveness. J Anim Physiol Anim Nutr 99:591–604CrossRefGoogle Scholar
  141. Murray MG (1993) Comparative nutrition of wildebeest, hartebeest and topi in the Serengeti. Afr J Ecol 31:172–177CrossRefGoogle Scholar
  142. Murray MG, Illius AW (2000) Vegetation modification and resource competition in grazing ungulates. Oikos 89:501–508CrossRefGoogle Scholar
  143. Nultsch W (2000) Allgemeine Botanik (General Botany), 11th edn. Georg Thieme Verlag, StuttgartGoogle Scholar
  144. Nygren K, Lechner-Doll M, Hofmann RR (2001) Influence of papillae on post-ruminal regulation of ingesta passage in moose (Alces alces). J Zool 254:375–380CrossRefGoogle Scholar
  145. Obidziński A, Miltko R, Bolibok L, Wajdzik M, Skubis J, Nasiadka P (2017) Variation of natural diet of free ranging mouflon affects their ruminal protozoa composition. Small Rumin Res 157:57–64CrossRefGoogle Scholar
  146. Orme D et al. (2013) Caper: comparative analyses of phylogenetics and evolution in R. R package version 0.5.2. https://CRAN.R-project.org/package=caper
  147. Owen-Smith N (1997) Distinctive features of the nutritional ecology of browsing versus grazing ruminants. Z Säugetierkd 62:176–191Google Scholar
  148. Owen-Smith N (2013) Megaherbivores. In: Levin S (ed) Encyclopedia of biodiversity, 2nd edn. AcademicGoogle Scholar
  149. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884CrossRefGoogle Scholar
  150. Paine OCC et al (2018) Grass leaves as potential hominin dietary resources. J Hum Evol 117:44–52CrossRefGoogle Scholar
  151. Palmqvist P, Gröcke DR, Arribas A, Fariña RA (2003) Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr:Zn) and ecomorphological approaches. Paleobiology 29:205–229CrossRefGoogle Scholar
  152. Pérez-Barbería FJ, Gordon IJ (2001) Relationships between oral morphology and feeding style in the Ungulata: a phylogenetically controlled evaluation. Proc R Soc Lond B Biol Sci 268:1021–1030CrossRefGoogle Scholar
  153. Pérez-Barbería J, Gordon I, Illius A (2001) Phylogenetic analysis of stomach adaptation in digestive strategies in African ruminants. Oecologia 129:498–508CrossRefGoogle Scholar
  154. Pérez-Barbería FJ, Elston DA, Gordon IJ, Illius AW (2004) The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proc R Soc Lond B Biol Sci 271:1081–1090.  https://doi.org/10.1098/rspb.2004.2714 CrossRefGoogle Scholar
  155. Pretorius Y et al (2016) Why elephant have trunks and giraffe long tongues: how plants shape large herbivore mouth morphology. Acta Zool 97:246–254.  https://doi.org/10.1111/azo.12121 CrossRefGoogle Scholar
  156. Prins HHT, Olff H (1998) Species-richness of African grazer assemblages: towards a functional explanation. In: Newbery DM, Prins HHT, Brown N (eds) Dynamics of tropical communities. Blackwell Science, Oxford, pp 449–490Google Scholar
  157. Rabenold D, Pearson OM (2014) Scratching the surface: a critique of Lucas et al. (2013)’s conclusion that phytoliths do not abrade enamel. J Hum Evol 74:13–133CrossRefGoogle Scholar
  158. Raia P, Carotenuto F, Meloro C, Piras P, Pushkina D (2010) The shape of contention: adaptation, history, and contingency in ungulate mandibles. Evolution 64:1489–1503PubMedGoogle Scholar
  159. Reed KE (1996) The palaeoecology of Makapansgat and other African Plio-Pleistocene hominid localities. Unpublished PhD thesis, University of Michigan, MichiganGoogle Scholar
  160. Reilly SM, McBrayer LD, White TD (2001) Prey processing in amniotes: biomechanical and behavioral patterns of food reduction. Comp Biochem Physiol A Mol Integr Physiol 128:397–415CrossRefGoogle Scholar
  161. Rivals F, Semprebon GM, Solounias N (2010) Advances in ungulate dental wear techniques reveal new patterns of niche breadth and expansion throughout the Cenozoic. J Vertebr Paleontol SVP Program and Abstracts Book:151A–152AGoogle Scholar
  162. Robbins CT, Spalinger DE, Van Hoven W (1995) Adaptation of ruminants to browse and grass diets: are anatomical-based browser-grazer interpretations valid? Oecologia 103:208–213CrossRefGoogle Scholar
  163. Rowell-Schäfer A, Lechner-Doll M, Hofmann RR, Streich WJ, Güven B, Meyer HHD (2001) Metabolic evidence of a “rumen bypass” or a “ruminal escape” of nutrients in roe deer (Capreolus capreolus). Comp Biochem Physiol A Mol Integr Physiol 128:289–298CrossRefGoogle Scholar
  164. Sakaguchi E, Itoh J, Shinohara H, Matsumoto T (1981) Effects of removal of the forestomach and caecum on the utilization of dietary urea in golden hamsters (Mesocricetus auratus) given two different diets. Br J Nutr 46:503–512CrossRefGoogle Scholar
  165. Sanson GD (1989) Morphological adaptations of teeth to diets and feeding in the Macropodoidea. In: Grigg G, Jarman PJ, Hume I (eds) Kangaroos, Wallabies and Rat-kangaroos. Surrey-Beatty, Sydney, pp 151–168Google Scholar
  166. Sanson GD, Read SKJ (2017) Dietary exogenous and endogenous abrasives and tooth wear in African buffalo. Biosurf Biotribol 3:211–223CrossRefGoogle Scholar
  167. Sanson GD, Kerr SA, Gross KA (2007) Do silica phytoliths really wear mammalian teeth? J Archaeol Sci 34:526–531CrossRefGoogle Scholar
  168. Sauer C, Bertelsen MF, Hammer S, Lund P, Weisbjerg MR, Clauss M (2016) Macroscopic digestive tract anatomy of two small antelopes, the blackbuck (Antilope cervicapra) and the Arabian sand gazelle (Gazella subgutturosa marica). Anat Histol Embryol 45:392–398CrossRefGoogle Scholar
  169. Schuette JR, Leslie DMJ, Lochmiller RL, Jenks JA (1998) Diets of hartebeest and roan antelope in Burkina Faso: support of the long-faced hypothesis. J Mammal 79:426–436CrossRefGoogle Scholar
  170. Shipley LA (2007) The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos 116:1964–1974CrossRefGoogle Scholar
  171. Smith FA et al (2003) Body mass of late quaternary mammals. Ecology 84:3403. (Ecological Archives: E3084-3094)CrossRefGoogle Scholar
  172. Spencer LM (1995) Morphological correlates of dietary resource partitioning in the African Bovidae. J Mammal 76:448–471CrossRefGoogle Scholar
  173. Sponheimer M et al (2003) Diets of southern African Bovidae: stable isotope evidence. J Mammal 84:471–479CrossRefGoogle Scholar
  174. Stayton CT (2006) Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60:824–841CrossRefGoogle Scholar
  175. Steuer P et al (2010) Comparative investigations on digestion in grazing (Ceratotherium simum) and browsing (Diceros bicornis) rhinoceroses. Comp Biochem Physiol A Mol Integr Physiol 156:380–388CrossRefGoogle Scholar
  176. Strömberg CAE (2006) Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32:236–258.  https://doi.org/10.1666/0094-8373(2006)32[236:eohiet]2.0.co;2 CrossRefGoogle Scholar
  177. Sutherland TM (1988) Particle separation in the forestomach of sheep. In: Dobson A, Dobson MJ (eds) Aspects of digestive physiology in ruminants. Cornell University Press, Ithaca, NY, pp 43–73Google Scholar
  178. Tahas SA et al (2017) Gross measurements of the digestive tract and visceral organs of addax antelope (Addax nasomaculatus) following a concentrate or forage feeding regime. Anat Histol Embryol 46:282–293CrossRefGoogle Scholar
  179. Tahas SA et al (2018) Microanatomy of the digestive tract, hooves and some visceral organs of addax antelope (Addax nasomaculatus) following a concentrate or forage feeding regime. Anat Histol Embryol 47:254–267.  https://doi.org/10.1111/ahe.12351 CrossRefPubMedGoogle Scholar
  180. Tainton NM (1999) The ecology of the main grazing lands of South Africa: the savanna biome. In: Tainton NM (ed) Veld management in South Africa. University of Natal Press, Pietermaritzburg, pp 23–53Google Scholar
  181. Taylor LA et al (2013) Detecting inter-cusp and inter-tooth weat patterns in rhinocerotids. PLoS One 8:e80921CrossRefPubMedPubMedCentralGoogle Scholar
  182. Trautmann A, Schmitt I (1935) Experimentelle Untersuchungen zur Frage der Psalterfunktion (Experimental investigations on omasum function). Dtsch Tierarztl Wochenschr 12:177–179Google Scholar
  183. Trudell-Moore J, White RG (1983) Physical breakdown of food during eating and rumination in reindeer. Acta Zool Fenn 175:47–49Google Scholar
  184. Tschuor A, Clauss M (2008) Investigations on the stratification of forestomach contents in ruminants: an ultrasonographic approach. Eur J Wildl Res 54:627–633CrossRefGoogle Scholar
  185. Turnbull WD (1970) Mammalian masticatory apparatus. Fieldiana Geol 18:147–356Google Scholar
  186. Van Soest PJ (1965) Symposium on factors influencing the voluntary intake of herbage by ruminants: voluntary intake in relation to chemical composition and digestibility. J Anim Sci 24:834–843CrossRefGoogle Scholar
  187. Van Wieren SE (1996a) Browsers and grazers: foraging strategies in ruminants. In: Van Wieren SE (ed) Digestive strategies in ruminants and nonruminants. Thesis Landbouw, University of Wageningen, Wageningen, pp 119–146Google Scholar
  188. Van Wieren SE (1996b) Digestive strategies in ruminants and non-ruminants. PhD thesis. University of Wageningen, WageningenGoogle Scholar
  189. Van Zyl JHM (1965) The vegetation of the S.A. Lombard nature reserve and its utilization by certain antelope. Zool Afr 1:55–71CrossRefGoogle Scholar
  190. Varela L, Fariña RA (2015) Masseter moment arm as a dietary proxy in herbivorous ungulates. J Zool 296:295–304CrossRefGoogle Scholar
  191. Vermeij GJ (1994) The evolutionary interaction among species: selection, escalation, and coevolution. Annu Rev Ecol Syst 25:219–236CrossRefGoogle Scholar
  192. Vermeij GJ (2013) On escalation. Annu Rev Earth Planet Sci 41:1–19CrossRefGoogle Scholar
  193. Wattiaux MA, Satter LD, Mertens DR (1992) Effect of microbial fermentation on functional specific gravity of small forage particles. J Anim Sci 70:1262–1270CrossRefGoogle Scholar
  194. Williams SH, Stover KK, Davis JS, Montuelle SJ (2011) Mandibular corpus bone strains during mastication in goats (Capra hircus): a comparison of ingestive and rumination chewing. Arch Oral Biol 56:960–971CrossRefGoogle Scholar
  195. Xia J et al (2015) New model to explain tooth wear with implications for microwear formation and diet reconstruction. Proc Natl Acad Sci U S A 112:10669–10672.  https://doi.org/10.1073/pnas.1509491112 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daryl Codron
    • 1
    Email author
  • Reinhold R. Hofmann
    • 2
  • Marcus Clauss
    • 3
  1. 1.Department of Zoology and EntomologyUniversity of the Free StateBloemfonteinSouth Africa
  2. 2.TrompeterhausBaruth/MarkGermany
  3. 3.Clinic for Zoo Animals, Exotic Pets and Wildlife Vetsuisse FacultyUniversity of ZürichZürichSwitzerland

Personalised recommendations