Advertisement

The Paleoecological Impact of Grazing and Browsing: Consequences of the Late Quaternary Large Herbivore Extinctions

  • John RowanEmail author
  • J. T. Faith
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 239)

Abstract

As recently as ~50,000 years ago, a great diversity of large-bodied mammalian herbivores (species >44 kg) occupied nearly all of Earth’s terrestrial realms. Outside of sub-Saharan Africa, the vast majority of these species had disappeared by the Pleistocene-Holocene boundary ~11,700 years ago, either from human impacts, climate change, or some combination of both. Though research has focused on the causes of the late Quaternary extinctions since the nineteenth century, only recently has attention shifted to understanding their downstream consequences for the structure and functioning of terrestrial ecosystems. In this Chapter, we synthesize the available paleoecological datasets bearing on late Quaternary extinctions and corresponding ecosystem change in Australia, North America, and northern Eurasia. We show that across these regions, the disappearance of large herbivorous mammals had far-reaching impacts, including enhanced fire regimes and vegetation state shifts, reductions in seed dispersal and near-extinction of large fruiting plants, downsizing and diversity loss in invertebrate communities relying on herbivore dung, and the collapse of predator guilds relying on large mammal prey. Collectively, these late Quaternary paleoecological lessons emphasize that large herbivores are cornerstones of ecosystems and play major roles in both maintaining stability and driving state shifts. We conclude our Chapter by discussing how these lessons feed into conservation biology today and efforts to mitigate the effects of continued range contraction and extinction of large mammals over the next century.

Keywords

Megafauna Paleoecology Extinction Rewilding Sporormiella 

Notes

Acknowledgements

Thanks to editors I. Gordon and H. Prins for inviting us to contribute a chapter on the paleoecological impacts of browsing and grazing, and for their careful editing of this chapter. We acknowledge the contributions of Søren Faurby and colleagues and the PHYLACINE dataset, which we heavily relied upon in this chapter.

References

  1. Allen JR, Hickler T, Singarayer JS et al (2010) Last glacial vegetation of northern Eurasia. Quat Sci Rev 29:2604–2618CrossRefGoogle Scholar
  2. Alroy J (1999) Putting North America’s end-Pleistocene megafaunal extinction in context. In: MacPhee RDE, Sues HD (eds) Extinctions in near time. Springer, Boston, pp 105–143CrossRefGoogle Scholar
  3. Baker AG, Bhagwat SA, Willis KJ (2013) Do dung fungal spores make a good proxy for past distribution of large herbivores? Quat Sci Rev 62:21–31CrossRefGoogle Scholar
  4. Barnosky AD (2008) Megafauna biomass tradeoff as a driver of quaternary and future extinctions. Proc Natl Acad Sci USA 105:11543–11548PubMedCrossRefGoogle Scholar
  5. Barnosky AD, Koch PL, Feranec RS et al (2004) Assessing the causes of late Pleistocene extinctions on the continents. Science 306:70–75PubMedCrossRefGoogle Scholar
  6. Barnosky AD, Matzke N, Tomiya S et al (2011) Has earth’s sixth mass extinction already arrived? Nature 471:51–57PubMedCrossRefGoogle Scholar
  7. Boulanger MT, Lyman RL (2014) Northeastern North American Pleistocene megafauna chronologically overlapped minimally with Paleoindians. Quat Sci Rev 85:35–46CrossRefGoogle Scholar
  8. Broughton JM, Weitzel EM (2018) Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat Commun 9:5441PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bunney K, Bond WJ, Henley M (2017) Seed dispersal kernel of the largest surviving megaherbivore—the African savanna elephant. Biotropica 49:395–401CrossRefGoogle Scholar
  10. Burney DA, Flannery TF (2005) Fifty millennia of catastrophic extinctions after human contact. Trends Ecol Evol 20:395–401PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cardillo M, Mace GM, Jones KE et al (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241PubMedCrossRefPubMedCentralGoogle Scholar
  12. Ceballos G, Ehrlich PR, Barnosky AD et al (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chown SL, Scholtz CH, Klok CJ et al (1995) Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct Ecol 9:30–39CrossRefGoogle Scholar
  14. Coltrain JB, Harris JM, Cerling TE (2004) Rancho La Brea stable isotope biogeochemistry and its implications for the palaeoecology of late Pleistocene, coastal southern California. Palaeogeogr Palaeoclimatol Palaeoecol 205:199–219CrossRefGoogle Scholar
  15. Corlett RT (2013) The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol Conserv 163:13–21CrossRefGoogle Scholar
  16. Davis OK (1987) Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quat Res 28:290–294CrossRefGoogle Scholar
  17. Davis M, Faurby S, Svenning JC (2018) Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc Natl Acad Sci USA 115:11262–11267PubMedCrossRefPubMedCentralGoogle Scholar
  18. DeSantis LR, Field JH, Wroe S et al (2017) Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change. Paleobiology 43:181–195CrossRefGoogle Scholar
  19. Estes R (2014) The Gnu’s world: Serengeti wildebeest ecology and life history. University of California Press, BerkeleyGoogle Scholar
  20. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet earth. Science 333:301–306PubMedCrossRefPubMedCentralGoogle Scholar
  21. Faith JT, Surovell TA (2009) Synchronous extinction of North America’s Pleistocene mammals. Proc Natl Acad Sci USA 106:20641–20645PubMedCrossRefPubMedCentralGoogle Scholar
  22. Faith JT, Rowan J, Du A, Koch PL (2018) Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362:938–941PubMedCrossRefPubMedCentralGoogle Scholar
  23. Faurby S, Svenning JC (2015) Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Divers Distrib 21:1155–1166CrossRefGoogle Scholar
  24. Faurby S, Davis M, Pedersen RØ et al (2018) PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99:2626–2626PubMedCrossRefPubMedCentralGoogle Scholar
  25. Feranec RS, Miller NG, Lothrop JC et al (2011) The Sporormiella proxy and end-Pleistocene megafaunal extinction: a perspective. Quat Int 245:333–338CrossRefGoogle Scholar
  26. Galetti M, Moleón M, Jordano P et al (2018) Ecological and evolutionary legacy of megafauna extinctions. Biol Rev 93:845–862PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gill JL (2014) Ecological impact of late Quaternary megaherbivore extinctions. New Phytol 201:1163–1169PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gill JL, Williams JW, Jackson ST et al (2009) Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1100–1103PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gill JL, Williams JW, Jackson ST et al (2012) Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat Sci Rev 34:66–80CrossRefGoogle Scholar
  30. Gill JL, McLauchlan KK, Skibbe AM et al (2013) Linking abundances of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in paleorecords. J Ecol 101:1125–1136CrossRefGoogle Scholar
  31. Gillespie R, Brook BW (2006) Is there a Pleistocene archaeological site at Cuddie Springs? Archaeol Ocean 41:1–11CrossRefGoogle Scholar
  32. Gillespie R, Brook BW, Baynes A (2006) Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa 30:163–186CrossRefGoogle Scholar
  33. González-Guarda E, Petermann-Pichincura A, Tornero C et al (2018) Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile. Proc Natl Acad Sci USA 115:9258–9263.  https://doi.org/10.1073/pnas.1804642115 CrossRefPubMedGoogle Scholar
  34. Grayson DK, Meltzer DJ (2015) Revisiting Paleoindian exploitation of extinct North American mammals. J Archaeol Sci 56:177–193CrossRefGoogle Scholar
  35. Gunter NL, Weir TA, Slipinksi A et al (2016) If dung beetles (Scarabaeidae: Scarabaeinae) arose in association with dinosaurs, did they also suffer a mass co-extinction at the K-Pg boundary? PLoS One 11:e0153570PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guthrie RD (2001) Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat Sci Rev 20:549–574CrossRefGoogle Scholar
  37. Halligan JJ, Waters MR, Perrotti A, Owens IJ, Feinberg JM, Bourne MD, Fenerty B, Winsborough B, Carlson D, Fisher DC, Stafford TW, Dunbar JS (2016) Pre-Clovis occupation 14,550 years ago at the Page-Ladson site, Florida, and the peopling of the Americas. Sci Adv 2:e1600375PubMedPubMedCentralCrossRefGoogle Scholar
  38. Helgen KM, Wells RT, Kear BP et al (2006) Ecological and evolutionary significance of sizes of giant extinct kangaroos. Aust J Zool 54:293–303CrossRefGoogle Scholar
  39. Hempson GP, Archibald S, Bond WJ (2015) A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350:1056–1061PubMedCrossRefGoogle Scholar
  40. Holliday VT, Surovell T, Meltzer DJ et al (2014) The Younger Dryas impact hypothesis: a cosmic catastrophe. J Quat Sci 29:515–530CrossRefGoogle Scholar
  41. Janzen DH, Martin PS (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:19–27PubMedCrossRefPubMedCentralGoogle Scholar
  42. Johnson CN (2002) Determinants of loss of mammal species during the late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc R Soc B 269:2221–2227PubMedCrossRefPubMedCentralGoogle Scholar
  43. Johnson CN (2009) Ecological consequences of Late Quaternary extinctions of megafauna. Proc R Soc B 276:2509–2519PubMedCrossRefPubMedCentralGoogle Scholar
  44. Johnson CN, Rule S, Haberle SG et al (2015) Using dung fungi to interpret decline and extinction of megaherbivores: problems and solutions. Quat Sci Rev 110:107–113CrossRefGoogle Scholar
  45. Johnson CN, Rule S, Haberle SG et al (2016) Geographic variation in the ecological effects of extinction of Australia’s Pleistocene megafauna. Ecography 39:109–116CrossRefGoogle Scholar
  46. Kershaw AP, McKenzie GM, Porch N et al (2007) A high-resolution record of vegetation and climate through the last glacial cycle from Caledonia Fen, southeastern highlands of Australia. J Quat Sci 22:481–500CrossRefGoogle Scholar
  47. Kistler L, Newsom LA, Ryan TM et al (2015) Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proc Natl Acad Sci USA 112:15107–15112PubMedCrossRefPubMedCentralGoogle Scholar
  48. Koch PL, Barnosky AD (2006) Late Quaternary extinctions: state of the debate. Annual Rev Ecol Evol Syst 37:215–250CrossRefGoogle Scholar
  49. Koch PL, Hoppe KA, Webb SD (1998) The isotopic ecology of late Pleistocene mammals in North America: part 1 Florida. Chem Geol 152:119–138CrossRefGoogle Scholar
  50. Kryger U, Cole KS, Tukker R et al (2006) Biology and ecology of Circellium bacchus (Fabricius 1781) (Coleoptera Scarabaeidae), a South African dung beetle of conservation concern. Trop Zool 19:185–207Google Scholar
  51. Long JA, Archer M, Flannery T et al (2002) Prehistoric mammals of Australia and New Guinea: one hundred million years of evolution. Johns Hopkins University Press, BaltimoreGoogle Scholar
  52. Lundgren EJ, Ramp D, Ripple WJ et al (2018) Introduced megafauna are rewilding the Anthropocene. Ecography 41:857–866CrossRefGoogle Scholar
  53. Lyons SK, Smith FA, Brown JH (2004a) Of mice, mastodons and men: human-mediated extinctions on four continents. Evol Ecol Res 6:339–358Google Scholar
  54. Lyons SK, Smith FA, Wagner PJ et al (2004b) Was a ‘hyperdisease’ responsible for the late Pleistocene megafaunal extinction? Ecol Lett 7:859–868CrossRefGoogle Scholar
  55. Malhi Y, Doughty CE, Galetti M et al (2016) Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc Natl Acad Sci USA 113:838–846PubMedCrossRefPubMedCentralGoogle Scholar
  56. Marean CW, Ehrhardt CL (1995) Paleoanthropological and paleoecological implications of the taphonomy of a sabertooth’s den. J Hum Evol 29:515–547CrossRefGoogle Scholar
  57. Martin PS (1967) Prehistoric overkill. In: Martin PS, Wright HEJ (eds) Pleistocene extinctions: the search for a cause. Yale University Press, New Haven, pp 75–120Google Scholar
  58. Martin PS (1984) Prehistoric overkill: the global model. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tucson, pp 354–403Google Scholar
  59. Martin PS (2005) Twilight of the mammoths: ice age extinctions and the rewilding of North America. University of California Press, BerkeleyGoogle Scholar
  60. Martin PS, Steadman DW (1999) Prehistoric extinctions on islands and continents. In: MacPhee RDE, Sues HD (eds) Extinctions in near time. Springer, Boston, pp 17–52CrossRefGoogle Scholar
  61. Meltzer DJ (2015) Pleistocene overkill and North American mammalian extinctions. Ann Rev Anth 44:33–53CrossRefGoogle Scholar
  62. Menkhorst P, Knight F (2011) A field guide to the mammals of Australia. Oxford University Press, OxfordGoogle Scholar
  63. Nagaoka L, Rick T, Wolverton S (2018) The overkill model and its impact on environmental research. Ecol Evol 8:9683–9696PubMedPubMedCentralCrossRefGoogle Scholar
  64. Newsom LA, Mihlbachler MC (2006) Mastodons (Mammut americanum) diet foraging patterns based on analysis of dung deposits. In: First Floridians and Last Mastodons: the Page-Ladson site in the Aucilla River. Springer, Dordrecht, pp 263–331CrossRefGoogle Scholar
  65. Olff H, Ritchie ME, Prins HH (2002) Global environmental controls of diversity in large herbivores. Nature 415:901PubMedCrossRefPubMedCentralGoogle Scholar
  66. Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  67. Pinter N, Scott AC, Daulton TL et al (2011) The Younger Dryas impact hypothesis: a requiem. Earth Sci Rev 106:247–264CrossRefGoogle Scholar
  68. Pires MM, Guimarães PR, Galetti M et al (2018) Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41:153–163CrossRefGoogle Scholar
  69. Price GJ, Ferguson KJ, Webb GE et al (2017) Seasonal migration of marsupial megafauna in Pleistocene Sahul (Australia–New Guinea). Proc R Soc B 284:20170785PubMedCrossRefGoogle Scholar
  70. Prideaux GJ, Ayliffe LK, DeSantis LR et al (2009) Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. Proc Nat Acad Sci 106:11646–11650PubMedCrossRefGoogle Scholar
  71. Prins HHT (1998) The origins of grassland communities in northwestern Europe. In: Wallis de Vries MF, Bakker JP, van Wieren SE (eds) Grazing and conservation management. Kluwer Academic Publishers, Boston, pp 55–105CrossRefGoogle Scholar
  72. Ripple WJ, Estes JA, Beschta RL et al (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484PubMedCrossRefGoogle Scholar
  73. Ripple WJ, Newsome TM, Wolf C et al (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103PubMedPubMedCentralCrossRefGoogle Scholar
  74. Rivals F, Solounias N, Mihlbachler MC (2007) Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison. Quat Res 68:338–346CrossRefGoogle Scholar
  75. Roberts RG, Flannery TF, Ayliffe LK et al (2001) New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science 292:1888–1892PubMedCrossRefGoogle Scholar
  76. Robinson GS, Pigott Burney L, Burney DA (2005) Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecol Monogr 75:295–315CrossRefGoogle Scholar
  77. Rule S, Brook BW, Haberle SG et al (2012) The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335:1483–1486PubMedCrossRefGoogle Scholar
  78. Sandom C, Faurby S, Sandel B et al (2014) Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc R Soc B 281:20133254PubMedCrossRefGoogle Scholar
  79. Sandom CJ, Ejrnæs R, Hansen MD et al (2015) High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc Natl Acad Sci USA 111:4162–4167CrossRefGoogle Scholar
  80. Schweiger AH, Svenning JC (2018) Down-sizing of dung beetle assemblages over the last 53 000 years is consistent with a dominant effect of megafauna losses. Oikos 127:1–8CrossRefGoogle Scholar
  81. Sinclair ARE, Mduma S, Brashares JS (2003) Patterns of predation in a diverse predator–prey system. Nature 425:288PubMedCrossRefPubMedCentralGoogle Scholar
  82. Smith FA, Lyons SK, Ernest SM et al (2003) Body mass of late Quaternary mammals. Ecology 84:3403–3403CrossRefGoogle Scholar
  83. Smith FA, Doughty CE, Malhi Y et al (2016) Megafauna in the earth system. Ecography 39:99–108CrossRefGoogle Scholar
  84. Smith FA, Smith REE, Lyons SK et al (2018) Body size downgrading of mammals over the late Quaternary. Science 360:310–313PubMedCrossRefPubMedCentralGoogle Scholar
  85. Stuart AJ (1982) The occurrence of Hippopotamus in the British Pleistocene. Quartärpaläontologie 6:209–218Google Scholar
  86. Stuart AJ (2015) Late quaternary megafaunal extinctions on the continents: a short review. Geol J 50:338–363CrossRefGoogle Scholar
  87. Stuart AJ, Lister AM (2011) Extinction chronology of the cave lion Panthera spelaea. Quat Sci Rev 30:2329–2340CrossRefGoogle Scholar
  88. Svenning JC, Pedersen PB, Donlan CJ et al (2016) Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc Natl Acad Sci USA 113:898–906PubMedCrossRefPubMedCentralGoogle Scholar
  89. Tomlinson KW, van Langevelde F, Ward D, Prins HH, de Bie S, Vosman B, Sampaio EVSB, Sterck FJ (2016) Defence against vertebrate herbivores trades off into architectural and low nutrient strategies amongst savanna Fabaceae species. Oikos 125:126–136CrossRefGoogle Scholar
  90. Van Der Kaars S, Miller GH, Turney CS et al (2017) Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat Commun 8:14142PubMedPubMedCentralCrossRefGoogle Scholar
  91. Van Valkenburgh B, Hayward MW, Ripple WJ et al (2016) The impact of large terrestrial carnivores on Pleistocene ecosystems. Proc Natl Acad Sci USA 113:862–867PubMedCrossRefPubMedCentralGoogle Scholar
  92. Waldram MS, Bond WJ, Stock WD (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11:101–112CrossRefGoogle Scholar
  93. Wallach AD, Lundgren EJ, Ripple WJ et al (2018) Invisible megafauna. Conserv Biol 32:1–4CrossRefGoogle Scholar
  94. Weber L (2013) Plants that miss the megafauna. Wildl Aust 50:22Google Scholar
  95. Wilson DE, Reeder DM (eds) (2005) Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, BaltimoreGoogle Scholar
  96. Woodman N, Athfield NB (2009) Post-Clovis survival of American mastodon in the southern Great Lakes region of North America. Quat Res 72:359–363CrossRefGoogle Scholar
  97. Wroe S, Crowther M, Dortch J et al (2004) The size of the largest marsupial and why it matters. Proc R Soc B 271:S34–S36PubMedPubMedCentralGoogle Scholar
  98. Wroe S, Field JH, Archer M et al (2013) Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc Natl Acad Sci USA 110:8777–8781PubMedCrossRefPubMedCentralGoogle Scholar
  99. Yeakel JD, Guimarães PR, Bocherens H et al (2013) The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. Proc R Soc B 280:20130239PubMedCrossRefPubMedCentralGoogle Scholar
  100. Zimov SA (2005) Pleistocene park: return of the mammoth’s ecosystem. Science 308:796–798PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Organismic and Evolutionary BiologyUniversity of Massachusetts AmherstAmherstUSA
  2. 2.Department of AnthropologyUniversity of Massachusetts AmherstAmherstUSA
  3. 3.Natural History Museum of UtahUniversity of UtahSalt Lake CityUSA
  4. 4.Department of AnthropologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations