Skip to main content

Basics of Laser-Plasma Interaction: A Selection of Topics

  • Conference paper
  • First Online:
Laser-Driven Sources of High Energy Particles and Radiation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 231))

  • 818 Accesses

Abstract

A short, tutorial introduction to some basic concepts of laser-plasma interactions at ultra-high intensities is given. The selected topics include (a) elements of the relativistic dynamics of an electron in electromagnetic fields, including the ponderomotive force and classical radiation friction; (b) the “relativistic” nonlinear optical transparency and self-focusing; (c) the moving mirror concept and its application to light sail acceleration and high harmonic generation, with a note on related instabilities; (d) some specific phenomena related to the absorption of energy, kinetic momentum and angular momentum from the laser light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, in classical electrodynamics the ratio between the amount of energy and of momentum modulus in a wavepacket is c, thus this relation must be conserved if the wavepacket is totally absorbed by a medium. In a quantum picture, one may think of the absorption of a given number of photons, each having energy \(\mathcal{E}=\hbar \omega \) and momentum modulus \(\mathcal{E}/c\).

  2. 2.

    We stress that we define the PF as a cycle-averaged approximation of the Lorentz force. However, in the literature sometimes the term “oscillating PF” has been used [8] to refer to oscillating nonlinear terms in the Lorentz force (such as the \(\mathbf{v}\times \mathbf{B}\) term which has a \(2\omega \) component). This definition is inconsistent with the whole idea of separating the “slow” and “fast” scales in the motion.

  3. 3.

    Notice that in (2.9)–(2.10) \(\partial _\mathbf{r}(\dot{\mathbf{r}}_af_a)=\dot{\mathbf{r}}_a\partial _\mathbf{r}f_a\) and \(\partial _\mathbf{p}(\dot{\mathbf{p}}_af_a)=\dot{\mathbf{p}}_a\partial _\mathbf{p}f_a\), as it is usual to write for the Vlasov equation. However, if the LL force is added to the Lorentz force, \(\partial _\mathbf{p}(\dot{\mathbf{p}}_af_a)\ne \dot{\mathbf{p}}_a\partial _\mathbf{p}f_a\). This is not an issue for the standard PIC algorithms which provide a solution of the general kinetic equation (2.9).

  4. 4.

    In principle also low-frequency, coherent radiation which is resolved in the simulation contributes to the RF effect, thus there is some double counting of such radiation in the force since it is included both in the Lorentz and in the LL terms. However, for highly relativistic electrons with \(\gamma \gg 1\) the contribution of the low-frequency part is negligible with respect to that of the dominant frequencies in the radiation spectrum.

  5. 5.

    This estimate for the electron energy is commonly referred to as “ponderomotive scaling”; probably, the name originates from the questionable definition of nonlinear oscillating forces as “ponderomotive” (Sect. 2.2.2).

  6. 6.

    This is analogous to the absence of high-frequency longitudinal motion in a CP wave, Sect. 2.2.1.

  7. 7.

    Note that \(\rho _m\ell \) in (2.30) is formally equivalent to \(\sigma \) in (2.29), but here in (2.30) \(\rho _m\ell \) refers to the total mass of the mirror, i.e. including the ions.

  8. 8.

    https://en.wikipedia.org/wiki/Faraday_wave.

References

  1. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer. Springer Briefs in Physics (Springer, 2013). https://doi.org/10.1007/978-94-007-6125-4

    Book  Google Scholar 

  2. P. Gibbon, Short Pulse Laser Interaction with Matter (Imperial College Press, 2005)

    Google Scholar 

  3. P. Mulser, D. Bauer, High Power Laser-Matter Interaction. Springer Tracts in Modern Physics (Springer, 2010). https://doi.org/10.1007/978-3-540-46065-7

    Book  Google Scholar 

  4. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006). https://doi.org/10.1103/RevModPhys.78.309

    Article  ADS  Google Scholar 

  5. P. Gibbon, Rivista del Nuovo Cimento 35, 607 (2012). https://doi.org/10.1393/ncr/i2012-10083-8

    Article  Google Scholar 

  6. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009). https://doi.org/10.1103/RevModPhys.81.1229

    Article  ADS  Google Scholar 

  7. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013). https://doi.org/10.1103/RevModPhys.85.751

    Article  ADS  Google Scholar 

  8. S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992). https://doi.org/10.1103/PhysRevLett.69.1383

    Article  ADS  Google Scholar 

  9. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998)

    MATH  Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 2nd edn., chap. 76 (Elsevier, Oxford, 1975)

    Chapter  Google Scholar 

  11. M. Tamburini, F. Pegoraro, A.D. Piazza, C.H. Keitel, A. Macchi, New J. Phys. 12, 123005 (2010). https://doi.org/10.1088/1367-2630/12/12/123005

    Article  ADS  Google Scholar 

  12. A. Di Piazza, Lett. Math. Phys. 83, 305 (2008). https://doi.org/10.1007/s11005-008-0228-9

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Macchi, Physics 11, 13 (2018). https://physics.aps.org/articles/v11/13

  14. C.K. Birdsall, A.B. Langdon, Plasma Physics Via Computer Simulation (Institute of Physics, Bristol, 1991)

    Book  Google Scholar 

  15. T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, C.P. Ridgers, Plasma Phys. Contr. Fus. 57, 113001 (2015). https://doi.org/10.1088/0741-3335/57/11/113001

    Article  ADS  Google Scholar 

  16. J. Derouillat, A. Beck, F. Prez, T. Vinci, M. Chiaramello, A. Grassi, M. Fl, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, M. Grech, Computer Phys. Comm. 222, 351 (2018). https://doi.org/10.1016/j.cpc.2017.09.024

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Vranic, J. Martins, R. Fonseca, L. Silva, Comp. Phys. Comm. 204, 141 (2016). https://doi.org/10.1016/j.cpc.2016.04.002

    Article  ADS  Google Scholar 

  18. G.Z. Sun, E. Ott, Y.C. Lee, P. Guzdar, Phys. Fluids 30, 526 (1987). https://doi.org/10.1063/1.866349

    Article  ADS  Google Scholar 

  19. F. Cattani, A. Kim, D. Anderson, M. Lisak, Phys. Rev. E 62, 1234 (2000). https://doi.org/10.1103/PhysRevE.62.1234

    Article  ADS  Google Scholar 

  20. V.A. Vshivkov, N.M. Naumova, F. Pegoraro, S.V. Bulanov, Phys. Plasmas 5, 2727 (1998). https://doi.org/10.1063/1.872961

    Article  ADS  Google Scholar 

  21. W. Rozmus, V.T. Tikhonchuk, R. Cauble, Phys. Plasmas 3, 360 (1996). https://doi.org/10.1063/1.871861

    Article  ADS  Google Scholar 

  22. F. Brunel, Phys. Rev. Lett. 59, 52 (1987). https://doi.org/10.1103/PhysRevLett.59.52

    Article  ADS  Google Scholar 

  23. W.L. Kruer, K. Estabrook, Phys. Fluids 28, 430 (1985). https://doi.org/10.1063/1.865171

    Article  ADS  Google Scholar 

  24. A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005). https://doi.org/10.1103/PhysRevLett.94.165003

    Article  ADS  Google Scholar 

  25. F. Brunel, Phys. Fluids 31, 2714 (1988). https://doi.org/10.1063/1.867001

    Article  ADS  Google Scholar 

  26. A. Macchi, A. Grassi, F. Amiranoff, C. Riconda, arXiv e-prints arXiv:1903.10393 (2019)

  27. A. Grassi, M. Grech, F. Amiranoff, A. Macchi, C. Riconda, Phys. Rev. E 96, 033204 (2017). https://doi.org/10.1103/PhysRevE.96.033204

    Article  ADS  Google Scholar 

  28. S.V. Bulanov, T. Esirkepov, T. Tajima, Phys. Rev. Lett. 91, 085001 (2003). https://doi.org/10.1103/PhysRevLett.91.085001

    Article  ADS  Google Scholar 

  29. U. Teubner, P. Gibbon, Rev. Mod. Phys. 81, 445 (2009). https://doi.org/10.1103/RevModPhys.81.445

    Article  ADS  Google Scholar 

  30. C. Thaury, F. Quéré, J. Phys. B At. Mol. Opt. Phys. 43, 213001 (2010). https://doi.org/10.1088/0953-4075/43/21/213001

    Article  ADS  Google Scholar 

  31. A. Macchi, S. Veghini, T.V. Liseykina, F. Pegoraro, New J. Phys. 12, 045013 (2010). https://doi.org/10.1088/1367-2630/12/4/045013

    Article  ADS  Google Scholar 

  32. Z. Merali, Science 352(6289), 1040 (2016). https://doi.org/10.1126/science.352.6289.1040

    Article  ADS  Google Scholar 

  33. S.V. Bulanov, E.Y. Echkina, T.Z. Esirkepov, I.N. Inovenkov, M. Kando, F. Pegoraro, G. Korn, Phys. Rev. Lett. 104, 135003 (2010). https://doi.org/10.1103/PhysRevLett.104.135003

    Article  ADS  Google Scholar 

  34. A. Sgattoni, S. Sinigardi, A. Macchi, Appl. Phys. Lett. 105, 084105 (2014). https://doi.org/10.1063/1.4894092

    Article  ADS  Google Scholar 

  35. A. Sgattoni, S. Sinigardi, L. Fedeli, F. Pegoraro, A. Macchi, Phys. Rev. E 91, 013106 (2015). https://doi.org/10.1103/PhysRevE.91.013106

    Article  ADS  Google Scholar 

  36. B. Eliasson, New J. Phys. 17, 033026 (2015). https://doi.org/10.1088/1367-2630/17/3/033026

    Article  ADS  Google Scholar 

  37. A. Macchi, F. Cornolti, F. Pegoraro, T.V. Liseikina, H. Ruhl, V.A. Vshivkov, Phys. Rev. Lett. 87, 205004 (2001). https://doi.org/10.1103/PhysRevLett.87.205004

    Article  ADS  Google Scholar 

  38. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford University Press, 2004)

    Google Scholar 

  39. S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, chap. X (Dover Publications, New York, 1981)

    Google Scholar 

  40. E. Ott, Phys. Rev. Lett. 29, 1429 (1972). https://doi.org/10.1103/PhysRevLett.29.1429

    Article  ADS  Google Scholar 

  41. F. Pegoraro, S.V. Bulanov, Phys. Rev. Lett. 99, 065002 (2007). https://doi.org/10.1103/PhysRevLett.99.065002

    Article  ADS  Google Scholar 

  42. V. Khudik, S.A. Yi, C. Siemon, G. Shvets, Phys. Plasmas 21(1), 013110 (2014). https://doi.org/10.1063/1.4863845

    Article  ADS  Google Scholar 

  43. M.G. Haines, Phys. Rev. Lett. 87, 135005 (2001). https://doi.org/10.1103/PhysRevLett.87.135005

    Article  ADS  Google Scholar 

  44. T.V. Liseykina, S.V. Popruzhenko, A. Macchi, New J. Phys. 18, 072001 (2016). https://doi.org/10.1088/1367-2630/18/7/072001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Macchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Macchi, A. (2019). Basics of Laser-Plasma Interaction: A Selection of Topics. In: Gizzi, L., Assmann, R., Koester, P., Giulietti, A. (eds) Laser-Driven Sources of High Energy Particles and Radiation. Springer Proceedings in Physics, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-030-25850-4_2

Download citation

Publish with us

Policies and ethics