Advertisement

Feed-Forward Neural Networks

  • Michel Denuit
  • Donatien Hainaut
  • Julien Trufin
Chapter
Part of the Springer Actuarial book series (SPACT)

Abstract

This chapter introduces the general features of artificial neural networks. After a presentation of the mathematical neural cell, we focus on feed-forward networks. First, we discuss the preprocessing of data and next we present a survey of the different methods for calibrating such networks. Finally, we apply the theory to an insurance data set and compare the predictive power of neural networks and generalized linear models.

References

  1. Bishop C (1995) Neural networks for pattern recognition. Clarendon Press, OxfordzbMATHGoogle Scholar
  2. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2:303–314MathSciNetCrossRefGoogle Scholar
  3. Denuit M, Hainaut D, Trufin J (2019) Effective statistical learning methods for actuaries: GLMs and extensions. Springer, BerlinCrossRefGoogle Scholar
  4. Efron B, Hinkley DV (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus expected FisherInformation. Biometrika 65(3):457–487MathSciNetCrossRefGoogle Scholar
  5. Hastie T, Tibshirani R, Friedman J (2009) The Elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  6. Haykin S (1994) Neural networks: a comprehensive foundation. Prentice-Hall, Saddle RiverzbMATHGoogle Scholar
  7. Hornik K (1991) Approximation capabilities of multilayer feed-forward networks. Neural Netw 4:251–257CrossRefGoogle Scholar
  8. Hornik K, Stinchcombe M, White H (1989) Multi-layer feed-forward networks are universal approximators. Neural Netw 2:359–366.CrossRefGoogle Scholar
  9. McCulloch W, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys 5:115–133MathSciNetCrossRefGoogle Scholar
  10. McNelis PD (2005) Neural networks in finance: gaining predictive edge in the market. Advanced finance series. Elsevier Academic Press, CambridgeGoogle Scholar
  11. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092CrossRefGoogle Scholar
  12. Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 135(3):370–384CrossRefGoogle Scholar
  13. Ohlsson E, Johansson B (2010) Non-life insurance pricing with generalized linear models. Springer, BerlinCrossRefGoogle Scholar
  14. Parker D (1985) Learning logic, technical report TR-87. MIT Center for Research in Computational Economics and Management Science, CambridgeGoogle Scholar
  15. Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE international conference on neural networks. IEEE, Piscataway, pp 586–591CrossRefGoogle Scholar
  16. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408CrossRefGoogle Scholar
  18. Rumelhart D, Hinton G, Williams R (1986) Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition. MIT Press, Cambridge, pp 318–362Google Scholar
  19. Trufin J, Denuit M, Hainaut D (2019) Effective statistical learning methods for actuaries: tree-based methods. Springer, BerlinzbMATHGoogle Scholar
  20. Widrow B, Hoff M (1960) Adaptive switching circuits, IRE WESCON convention record, vol 4. pp 96–104Google Scholar
  21. Wilks SS (1938) The Large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann Math Stat 9:60–62CrossRefGoogle Scholar
  22. Wuthrich M, Buser C (2017) Data analytics for non-life insurance pricing. Swiss Finance Institute Research paper no.16-68. Available on SSRN https://ssrn.com/abstract=2870308

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michel Denuit
    • 1
  • Donatien Hainaut
    • 2
  • Julien Trufin
    • 3
  1. 1.Université Catholique LouvainLouvain-la-NeuveBelgium
  2. 2.Université Catholique de LouvainLouvain-la-NeuveFrance
  3. 3.Université Libre de BruxellesBrusselsBelgium

Personalised recommendations