Advertisement

The Birth of the Maser—Oil and the Milky Way: Applications of the Maser

  • Rob HerberEmail author
Chapter
Part of the Springer Biographies book series (SPRINGERBIOGS)

Abstract

During the time that Bloembergen was working on NMR, many others were doing research on microwaves for radar. The radar technology was continuously improved, but there were still problems with the signal-to-noise ratio. The technical question of how to obtain lower noise led to a fundamental physical principle: stimulated emission.

References

  1. 1.
    Bloembergen AR. Het gezin van Rie en Auke Bloembergen 1917–1956. Eigen Beheer (2003)Google Scholar
  2. 2.
    Einstein A. Zur Quantentheorie der Strahlung. Mitteilungen der Physikalischen Gesellschaft zu Zürich, 1916 en Physikalische Zeitschrift. 18: 121–128 (1917)Google Scholar
  3. 3.
    Tolman RC. Duration of Molecules in Upper Quantum States. Phys Rev 23: 693–709 (1924)CrossRefGoogle Scholar
  4. 4.
    Kramers HA. The Law of Dispersion and Bohr’s Theory of Spectra. Nature 113:673–674 (1925)CrossRefGoogle Scholar
  5. 5.
    Ladenburg R. Dispersion in Electrically Excited Gases. Rev Mod Phys 5:243–256 (1933)CrossRefGoogle Scholar
  6. 6.
    Lukishova SG. Valentin A. Fabrikant: Negative absorption, his 1951 patent application for amplification of electromagnetic radiation (ultraviolet, visible, infrared and radio spectral regions) and his experiments.. J Europ Opt Soc Rapid Publ 5: 10045S1–10 (2010)Google Scholar
  7. 7.
    nobelprize.org/nobel_prizes/physics/laureates/1966/kastler-bio.htmlGoogle Scholar
  8. 8.
    Brossel J and Kastler A. La détection de la résonance magnétique des niveaux excités: l’effet de dépolarization des radiations de résonance optique et de fluorescence. Compt Rend Acad Sci 229: 1213 (1949)Google Scholar
  9. 9.
    Lukishova SG. Valentin A. Fabrikant: Negative absorption, his 1951 patent application for amplification of electromagnetic radiation (ultraviolet, visible, infrared and radio spectral regions) and his experiments.. J Europ Opt Soc Rapid Publ 5: 10045S1–10 (2010)Google Scholar
  10. 10.
    Townes CH. How the Laser Happened. Oxford University Press, New York (1999)Google Scholar
  11. 11.
    Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)Google Scholar
  12. 12.
    Lamb WE Jr and Retherford RC. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys Rev 72:241–243 (1947)CrossRefGoogle Scholar
  13. 13.
    Lamb WE Jr and Retherford RC. Fine Structure of the Hydrogen Atom. Part 1. Phys Rev 79:549–572 (1950)CrossRefGoogle Scholar
  14. 14.
    Pound RV. Nuclear Spin Relaxation Times in Single Crystals of LiF. Phys Rev 81:156–157 (1951)CrossRefGoogle Scholar
  15. 15.
    Purcell EM and Pound RV. A Nuclear Spin System at Negative Temperature. Phys Rev 81:279 (1951)CrossRefGoogle Scholar
  16. 16.
    Ramsey NF and Pound RV. Nuclear Audiofrequency Spectroscopy by Resonant Heating of the Nuclear Spin System. Phys Rev 81: 278–279 (1951)CrossRefGoogle Scholar
  17. 17.
    Letter from NF Ramsey to RW Dixon, 14 February 2006Google Scholar
  18. 18.
    Ramsey NF. Nuclear Moments. Ann Rev Nuclear Science 1: 97–106 (1952)CrossRefGoogle Scholar
  19. 19.
    Interview Rob Herber with RV Pound 21 September 2007Google Scholar
  20. 20.
    Interview Joan Bromberg and Paul L Kelley with Nicolaas Bloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html
  21. 21.
    Townes CH. How the Laser Happened. Oxford University Press, New York (1999)Google Scholar
  22. 22.
    Interview Rob Herber with N Ramsey, 20 September 2007Google Scholar
  23. 23.
    Myers RA and Dixon RW. Who invented the laser: An analysis of the early patents. Hist Stud Phys Biol Sci 34:115–149 (2003)CrossRefGoogle Scholar
  24. 24.
    Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)Google Scholar
  25. 25.
    Townes CH. How the Laser Happened. Oxford University Press, New York (1999)Google Scholar
  26. 26.
    Cleeton CE and Williams NH, A Magnetostatic Oscillator for the Generation of 1 to 3 cm Waves. Phys Rev 44: 421 (1933)CrossRefGoogle Scholar
  27. 27.
    Cleeton CE and Williams NH. Electromagnetic Waves of 1.1 cm Wave-length and the Absorption Spectrum of Ammonia. Phys Rev 45:234–237 (1934)CrossRefGoogle Scholar
  28. 28.
    Townes CH. How the Laser Happened. Oxford University Press, New York (1999)Google Scholar
  29. 29.
    Townes CH. The Ammonia Spectrum and Line Shapes Near 1.25-cm Wave-Length. Phys Rev 70:665–671 (1946)CrossRefGoogle Scholar
  30. 30.
    Gordon JP, Zeiger HJ and Townes CH. Molecular Device and New Hyperfine Structure in the Microwave Spectrum of NH3. Phys Rev 95:282–284 (1954)Google Scholar
  31. 31.
    Gordon JP, Zeiger HJ and Townes CH. The Maser – New Type of Microwave Amplifier, Frequency Standard, and Spectrometer. Phys Rev 99:1264–1274 (1955)CrossRefGoogle Scholar
  32. 32.
    Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)Google Scholar
  33. 33.
    Interview Rob Herber with N Ramsey 20 September 2007Google Scholar
  34. 34.
    Interview Jeff Hecht with N Bloembergen, 5 Nov 1984, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USAGoogle Scholar
  35. 35.
    Interview Joan Bromberg and Paul L Kelley with N Bloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html
  36. 36.
    Interview Rob Herber with N Bloembergen, 6 December 2006Google Scholar
  37. 37.
    Versitron Acts As Ultra Sensitive Amplifier And Thermal Detector. The Tech, February 8 (1957)Google Scholar
  38. 38.
    Interview Rob Herber with N Bloembergen, 6 December 2006Google Scholar
  39. 39.
    Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)Google Scholar
  40. 40.
    Interview Joan Bromberg and Paul L Kelley met NBloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html
  41. 41.
    Interview Rob Herber with N Bloembergen, 7 December 2006Google Scholar
  42. 42.
    Mattson J, Simon M. Pioneers of NMR and Magnetic Resonance in Medicine. The story of MRI. Dean Books, Jericho, 1996Google Scholar
  43. 43.
    Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)Google Scholar
  44. 44.
    Interview Arthur Guenther with D.N.G. Basov, 14 September 1984. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4495.html
  45. 45.
    Interview Joan Bromberg J and Paul L Kelley with N Bloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html
  46. 46.
    Bloembergen N. Proposal for a New Type of Solid State Maser. Phys Rev 104:324–327 (1956)Google Scholar
  47. 47.
    Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)Google Scholar
  48. 48.
    Townes CH. How the Laser Happened. Oxford University Press, New York (1999)Google Scholar
  49. 49.
    Bloembergen AR. Het gezin van Rie en Auke Bloembergen 1917–1956. Eigen Beheer (2003)Google Scholar
  50. 50.
    Interview Joan Bromberg J and Paul L Kelley with N Bloembergen, 27 June 1983. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history/ohilist/4511.html
  51. 51.
    Townes CH. How the Laser Happened. Oxford University Press, New York (1999)Google Scholar
  52. 52.
    Artman JO, Bloembergen N and Shapiro S. Operation of a Three-Level Solid State Maser at 21 cm. Phys Rev 109:1392–1393 (1958)CrossRefGoogle Scholar
  53. 53.
    Artman JO, Bloembergen N and Shapiro S. Operation of a Three-Level Solid State Maser at 21 cm. Phys Rev 109:1392–1393 (1958)CrossRefGoogle Scholar
  54. 54.
    Makhov G, Kikuchi C, Lambe J and Terhune RW. Maser Action in Ruby Phys Rev 109:1399–1400 (1958)Google Scholar
  55. 55.
    Interview Jeff Hecht with N Bloembergen. 5 Nov 1984, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USAGoogle Scholar
  56. 56.
    Bloembergen N. Uninterrupted Amplification Key Stimulated Emission of Radiation from a Substance Having Three Energy States. United States Patent Office 2.909.654 (1959)Google Scholar
  57. 57.
    Townes CH. Production of Electromagnetic Energy. United States Patent Office 2.879.439 (1959)Google Scholar
  58. 58.
    Myers RA and Dixon RW. Who invented the laser: An analysis of the early patents. Hist Stud Phys Biol Sci 34:115–149 (2003)CrossRefGoogle Scholar
  59. 59.
    Shapiro S and Bloembergen N. Relaxation Effects in a Maser Material, K3(CoCr)(CN)6. Phys Rev 116:1453–1458 (1959)CrossRefGoogle Scholar
  60. 60.
    Bloembergen N. (ed) Encounters in Magnetic Resonances. World Scientific, Singapore (1996)Google Scholar
  61. 61.
    Interview Rob Herber with D and N Bloembergen, 7 December 2006Google Scholar
  62. 62.
    Hecht J. Beam. The Race to Make the Laser. Oxford University Press, Oxford (2005)Google Scholar
  63. 63.
    Ramsey N. The Atomic Hydrogen Maser. Metrologica 1:7–15 (1965)CrossRefGoogle Scholar
  64. 64.
  65. 65.
  66. 66.
    en.wkipedia.orgGoogle Scholar
  67. 67.
    Interview Rob Herber with N Ramsey, 20 September 2007Google Scholar
  68. 68.
    Bloembergen N. Paramagnetic Resonance Precession Method and Apparatus for Well Logging. United States Patent Office 3.242.422 (1966)Google Scholar
  69. 69.
    Bloembergen N. Quantum Mechanical Counters. United States Patent Office 3.070.698 (1962)Google Scholar
  70. 70.
    Letter from N Bloembergen to G Gloudemans, 31 March 1961Google Scholar
  71. 71.
    Letter from JP Simons to N Bloembergen, 12 May 1969Google Scholar
  72. 72.
    Interview Rob Herber with D and N Bloembergen, 7 December 2006Google Scholar
  73. 73.
    Bloembergen N, Royce EB. Electric Shift of the Cr3+ Magnetic Resonance in Ruby. In: Low W (ed) Low Symposium on Paramagnetic Resonance. Academic Press, New York, 1963Google Scholar
  74. 74.
    Bloembergen N. (ed) Encounters in Magnetic Resonances. World Scientific, Singapore, 1996Google Scholar
  75. 75.
  76. 76.
    Beekman G. Vijftig jaar Nederlandse radiosterrenkunde: een verjaardag zonder jarige. (Fifty years of Dutch radio astronomy: a birthday without a birthday) Zenit. April 1999Google Scholar
  77. 77.
    en.wikipedia.nlGoogle Scholar
  78. 78.
    Bloembergen N. (ed) Encounters in Magnetic Resonances. World Scientific, Singapore, 1996Google Scholar
  79. 79.
    Jelly JV and Cooper BFC. Operational Ruby Maser for Observations at 21 Centimeters with a 60-Foot Radio Telescope. Rev Sci Instrum 32:166–175 (1961)Google Scholar
  80. 80.
    Bloembergen N. (ed) Encounters in Magnetic Resonances. World Scientific, Singapore, 1996Google Scholar
  81. 81.
    Penzias AA and Wilson AA. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astroph J 142:419–421(1965)CrossRefGoogle Scholar
  82. 82.
    nobelprize.org/nobel_prizes/physics/laureates/1978/press.htmlGoogle Scholar
  83. 83.
    Bridging the Gap. DARPA. Powered by Ideas. (2005)Google Scholar
  84. 84.
    Atta RH van, Deitchman SJ and Reed SG. DARPA Technical Accomplishments Volume III. Institute for Defense Analyses. Alexandria, Virginia (1991)Google Scholar
  85. 85.
  86. 86.
    Mattson J, Simon M. Pioneers of NMR and Magnetic Resonance in Medicine. The Story of MRI. Dean Books, Jericho, 1996Google Scholar
  87. 87.
    Dong, Jiang. (2008). The Principle and Application of Maser Navigation. https://arxiv.org/abs/0901.0068
  88. 88.
    Brumfiel G. Microwave laser fulfills 60 years of promise. Nature News. August 12, 2012Google Scholar
  89. 89.
    Oxborrow M., Breeze JD, and Alford M. Nature 448:353–356 (2012)CrossRefGoogle Scholar
  90. 90.
    Kragh H. Quantum generations: a history of physics in the twentieth century. Princeton University Press, Princeton, NJ, 1999Google Scholar
  91. 91.
    Kittel C. Introduction to Solid State Physics. John Wiley. New York (1996). 7th ednGoogle Scholar
  92. 92.
    Erwin SE. When is a metal not a metal? Nature 441:295-296 (2006)CrossRefGoogle Scholar
  93. 93.
    Bloembergen N. Electrical Shift in Magnetic Resonance. In: Smith J (ed) Proc XIIth Colloque Ampère 39–57 (1963)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations