Spin-Orbit Coupling Effects in InSe Films

  • Samuel J. MagorrianEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, we explore two important consequences of spin-orbit coupling (SOC) near the band edges of ultrathin InSe films. Firstly, we show how conduction band electrons in few-layer InSe experience the Rashba effect, which can give rise to anomalous magnetotransport effects arising from weak antilocalisation. SOC is added to the self-consistent hybrid \(\mathbf {k \cdot p}\) tight-binding model perturbatively, and the variation of Rashba SOC with the strength and profile of doping can therefore be investigated. Secondly, we show how spin-orbit coupling (SOC) hybridises deeper occupied bands with the band-edge valence states, satisfying the angular momentum and symmetry requirements to allow the principal interband optical transition to couple to in-plane polarised light. The relaxation of the selection rule for the polarisation of the principal interband optical transition is strongest in the monolayer, and becomes very weak in the bulk limit.


  1. 1.
    Zólyomi V, Drummond ND, Fal’ko VI (2014) Phys Rev B 89:205416ADSCrossRefGoogle Scholar
  2. 2.
    Zhou M, Zhang R, Sun J, Lou W-K, Zhang D, Yang W, Chang K (2017) Phys Rev B 96:155430ADSCrossRefGoogle Scholar
  3. 3.
    Knap W, Skierbiszewski C, Zduniak A, Litwin-Staszewska E, Bertho D, Kobbi F, Robert JL, Pikus GE, Pikus FG, Iordanskii SV, Mosser V, Zekentes K, Lyanda-Geller YB (1996) Phys Rev B 53:3912ADSCrossRefGoogle Scholar
  4. 4.
    Dyakanov MI, Perel VI (1971) Sov Phys J Exp Theor Phys Lett 33:1053ADSGoogle Scholar
  5. 5.
    Elliott RJ (1954) Phys Rev 96:266ADSCrossRefGoogle Scholar
  6. 6.
    Yafet Y (1963) Solid State Phys 14:1CrossRefGoogle Scholar
  7. 7.
    Premasiri K, Radha SK, Sucharitakul S, Kumar UR, Sankar R, Chou F-C, Chen Y-T, Gao XPA (2018) Nano Lett 18:4403ADSCrossRefGoogle Scholar
  8. 8.
    Zeng J, Liang S-J, Gao A, Wang Y, Pan C, Wu C, Liu E, Zhang L, Cao T, Liu X, Fu Y, Wang Y, Watanabe K, Taniguchi T, Lu H, Miao F (2018) Phys Rev B 98:125414ADSCrossRefGoogle Scholar
  9. 9.
    Takasuna S, Shiogai J, Matsuzaka S, Kohda M, Oyama Y, Nitta J (2017) Phys Rev B 96:161303(R)ADSCrossRefGoogle Scholar
  10. 10.
    Li P, Appelbaum I (2015) Phys Rev B 92:195129ADSCrossRefGoogle Scholar
  11. 11.
    Kress-Rogers E, Nicholas R, Portal J, Chevy A (1982) Solid State Commun 44:379ADSCrossRefGoogle Scholar
  12. 12.
    Bandurin DA, Tyurnina AV, Geliang LY, Mishchenko A, Zólyomi V, Morozov SV, Kumar RK, Gorbachev RV, Kudrynskyi ZR, Pezzini S, Kovalyuk ZD, Zeilter U, Novoselov KS, Patanè A, Eaves L, Grigorieva II, Fal’ko VI, Geim AK, Cao Y (2017) Nat Nanotechnol 12:223ADSCrossRefGoogle Scholar
  13. 13.
    Koga T, Nitta J, Akazaki T, Takayanagi H (2002) Phys Rev Lett 89:46801ADSCrossRefGoogle Scholar
  14. 14.
    Rybkovskiy DV, Osadchy AV, Obraztsova ED (2014) Phys Rev B 90:235302ADSCrossRefGoogle Scholar
  15. 15.
    Olsen T, Latini S, Rasmussen F, Thygesen KS (2016) Phys Rev Lett 116:56401ADSCrossRefGoogle Scholar
  16. 16.
    Zhu B, Chen X, Cui X (2015) Sci Rep 5:9218ADSCrossRefGoogle Scholar
  17. 17.
    Braun P-F, Urbaszek B, Amand T, Marie X, Krebs O, Eble B, Lemaitre A, Voisin P (2006) Phys Rev B 74:245306ADSCrossRefGoogle Scholar
  18. 18.
    Zijlstra W, Henrichs J, Voorst JV (1972) Chem Phys Lett 13:325ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Graphene InstituteUniversity of ManchesterManchesterUK

Personalised recommendations