Advertisement

Basic Interpretation Skills

  • Tom AdriaenssensEmail author
Chapter

Abstract

Due to its capacity to provide ultra-high detail images in an in vivo setting, intracoronary optical coherence tomography (OCT) has been adopted enthusiastically by the interventional community. For the individual operator, confronted with a set of >200 cross-sectional images after acquisition of a single pullback, sound knowledge of essential aspects of the images is indispensable, as well as appropriate skills for optimal acquisition of OCT images. In this chapter, we present a step by step approach that will help operators to plan the procedure properly, provide high quality OCT pullbacks and gain confidence in systematic and correct image interpretation. Key to interpretation success is the recognition of specific findings, both in the setting of assessing coronary artery disease, as well as studying results after percutaneous coronary intervention and stent implantation. Due to important differences in optical characteristics between different components of the vessel wall in healthy and diseased states, different components of atherosclerotic disease (such as fibrous plaques, fibrocalcific plaques and fibroatheromas) can be readily discriminated. Finally, we discuss strengths and limitations of the current technology, and possible pitfalls and artifacts that might carry a risk of over- or misinterpretation.

Keywords

Image acquisition Fibrous plaque Lipid plaque Calcified plaque Calcified nodule Thin capped fibroatheroma Macrophages Edge dissection 

References

  1. 1.
    Yonetsu T, Bouma BE, Kato K, Fujimoto JG, Jang IK. Optical coherence tomography-15 years in cardiology. Circ J. 2013;77:1933–40.CrossRefGoogle Scholar
  2. 2.
    Imola F, Mallus MT, Ramazzotti V, Manzoli A, Pappalardo A, Di Giorgio A, Albertucci M, Prati F. Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention. 2010;6:575–81.CrossRefGoogle Scholar
  3. 3.
    Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, Kato K, Yonetsu T, Vergallo R, Hu S, Tian J, Lee H, Park SJ, Jang YS, Raffel OC, Mizuno K, Uemura S, Itoh T, Kakuta T, Choi SY, Dauerman HL, Prasad A, Toma C, McNulty I, Zhang S, Yu B, Fuster V, Narula J, Virmani R, Jang IK. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748–58.CrossRefGoogle Scholar
  4. 4.
    Girassolli A, Carrizo S, Jimenez-Valero S, Sanchez Recalde A, Ruiz Garcia J, Galeotte G, Moreno R. Utility of optical coherence tomography and intravascular ultrasound for the evaluation of coronary lesions. Rev Port Cardiol. 2013;32:925–9.CrossRefGoogle Scholar
  5. 5.
    Carrizo S, Salinas P, Jimenez-Valero S, Moreno R. Utility of optical coherence tomography to assess a hazy intracoronary image after percutaneous coronary intervention. Korean Circ J. 2013;43:44–7.CrossRefGoogle Scholar
  6. 6.
    Regar E, van Soest G, Bruining N, Constantinescu AA, van Geuns RJ, van der Giessen W, Serruys PW. Optical coherence tomography in patients with acute coronary syndrome. EuroIntervention. 2010;6(Suppl G):G154–60.PubMedGoogle Scholar
  7. 7.
    Kubo T, Ino Y, Tanimoto T, Kitabata H, Tanaka A, Akasaka T. Optical coherence tomography imaging in acute coronary syndromes. Cardiol Res Pract. 2011;2011:312978.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Prati F, Uemura S, Souteyrand G, Virmani R, Motreff P, Di Vito L, Biondi-Zoccai G, Halperin J, Fuster V, Ozaki Y, Narula J. Oct-based diagnosis and management of stemi associated with intact fibrous cap. JACC Cardiovasc Imaging. 2013;6:283–7.CrossRefGoogle Scholar
  9. 9.
    Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodriguez V, Jimenez-Quevedo P, Banuelos C, Fernandez-Ortiz A, Garcia E, Hernandez-Antolin R, Macaya C. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol. 2012;59:1080–9.CrossRefGoogle Scholar
  10. 10.
    De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation. 2000;101:1840–7.CrossRefGoogle Scholar
  11. 11.
    Yamaguchi Y, Kagawa E, Kato M, Sasaki S, Nakano Y, Ochiumi Y, Takiguchi Y, Arakawa Y, Ishimaru A, Ueda A, Dote K. A novel procedure for imaging acute coronary syndrome lesions using frequency-domain optical coherence tomography. EuroIntervention. 2013;9:996–1000.CrossRefGoogle Scholar
  12. 12.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.CrossRefGoogle Scholar
  13. 13.
    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudeck D, Falk E, Feldman MD, Fitzgerald P, Garcia H, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonada S, Suter M, Takarada S, Tanaka A, Terashima M, Troels T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59:1058–72.CrossRefGoogle Scholar
  14. 14.
    Ughi GJ, Adriaenssens T, Sinnaeve P, Desmet W, D’Hooge J. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images. Biomed Opt Express. 2013;4:1014–30.CrossRefGoogle Scholar
  15. 15.
    Abdolmanafi A, Duong L, Dahdah N, Adib IR, Cheriet F. Characterization of coronary artery pathological formations from oct imaging using deep learning. Biomed Opt Express. 2018;9:4936–60.CrossRefGoogle Scholar
  16. 16.
    Alfonso F, Paulo M, Gonzalo N, Dutary J, Jimenez-Quevedo P, Lennie V, Escaned J, Banuelos C, Hernandez R, Macaya C. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J Am Coll Cardiol. 2012;59:1073–9.CrossRefGoogle Scholar
  17. 17.
    Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol. 2012;59:2051–7.CrossRefGoogle Scholar
  18. 18.
    Shimamura K, Guagliumi G. Optical coherence tomography for online guidance of complex coronary interventions. Circ J. 2016;80:2063–72.CrossRefGoogle Scholar
  19. 19.
    Costa MA, Angiolillo DJ, Tannenbaum M, Driesman M, Chu A, Patterson J, Kuehl W, Battaglia J, Dabbons S, Shamoon F, Flieshman B, Niederman A, Bass TA. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective stllr trial). Am J Cardiol. 2008;101:1704–11.CrossRefGoogle Scholar
  20. 20.
    van Soest G, Regar E, Goderie TP, Gonzalo N, Koljenovic S, van Leenders GJ, Serruys PW, van der Steen AF. Pitfalls in plaque characterization by oct: image artifacts in native coronary arteries. JACC Cardiovasc Imaging. 2011;4:810–3.CrossRefGoogle Scholar
  21. 21.
    Hebsgaard L, Christiansen EH, Holm NR. Calibration of intravascular optical coherence tomography as presented in peer reviewed publications. Int J Cardiol. 2014;171:92–3.CrossRefGoogle Scholar
  22. 22.
    Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.CrossRefGoogle Scholar
  23. 23.
    Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K. Assessment of coronary intima--media thickness by optical coherence tomography: comparison with intravascular ultrasound. Circ J. 2005;69:903–7.CrossRefGoogle Scholar
  24. 24.
    Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J. 2006;152:755 e751–4.CrossRefGoogle Scholar
  25. 25.
    Cilingiroglu M, Oh JH, Sugunan B, Kemp NJ, Kim J, Lee S, Zaatari HN, Escobedo D, Thomsen S, Milner TE, Feldman MD. Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography. Catheter Cardiovasc Interv. 2006;67:915–23.CrossRefGoogle Scholar
  26. 26.
    Kawasaki M, Bouma BE, Bressner J, Houser SL, Nadkarni SK, MacNeill BD, Jang IK, Fujiwara H, Tearney GJ. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol. 2006;48:81–8.CrossRefGoogle Scholar
  27. 27.
    Manfrini O, Mont E, Leone O, Arbustini E, Eusebi V, Virmani R, Bugiardini R. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol. 2006;98:156–9.CrossRefGoogle Scholar
  28. 28.
    MacNeill BD, Jang IK, Bouma BE, Iftimia N, Takano M, Yabushita H, Shishkov M, Kauffman CR, Houser SL, Aretz HT, DeJoseph D, Halpern EF, Tearney GJ. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol. 2004;44:972–9.CrossRefGoogle Scholar
  29. 29.
    Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9.CrossRefGoogle Scholar
  30. 30.
    Fujiyoshi K, Minami Y, Ishida K, Kato A, Katsura A, Muramatsu Y, Sato T, Kakizaki R, Nemoto T, Hashimoto T, Sato N, Meguro K, Shimohama T, Tojo T, Ako J. Incidence, factors, and clinical significance of cholesterol crystals in coronary plaque: an optical coherence tomography study. Atherosclerosis. 2019;283:79–84.CrossRefGoogle Scholar
  31. 31.
    Kellner-Weibel G, Jerome WG, Small DM, Warner GJ, Stoltenborg JK, Kearney MA, Corjay MH, Phillips MC, Rothblat GH. Effects of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death. Arterioscler Thromb Vasc Biol. 1998;18:423–31.CrossRefGoogle Scholar
  32. 32.
    Kume T, Okura H, Kawamoto T, Akasaka T, Toyota E, Watanabe N, Neishi Y, Sadahira Y, Yoshida K. Images in cardiovascular medicine. Fibrin clot visualized by optical coherence tomography. Circulation. 2008;118:426–7.CrossRefGoogle Scholar
  33. 33.
    De Cock D, et al. Healing course of acute vessel wall injury after drug-eluting stent implantation assessed by optical coherence tomography. Eur Heart J Cardiovasc Imaging. 2014;15:800–9.CrossRefGoogle Scholar
  34. 34.
    Bouma BE, Tearney GJ, Yabushita H, Shishkov M, Kauffman CR, DeJoseph Gauthier D, MacNeill BD, Houser SL, Aretz HT, Halpern EF, Jang IK. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart. 2003;89:317–20.CrossRefGoogle Scholar
  35. 35.
    Gonzalo N, Serruys PW, Okamura T, Shen ZJ, Onuma Y, Garcia-Garcia HM, Sarno G, Schultz C, van Geuns RJ, Ligthart J, Regar E. Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart. 2009;95:1913–9.CrossRefGoogle Scholar
  36. 36.
    Bezerra HG, Attizzani GF, Sirbu V, Musumeci G, Lortkipanidze N, Fujino Y, Wang W, Nakamura S, Erglis A, Guagliumi G, Costa MA. Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention. JACC. 2013;6:228–36.PubMedGoogle Scholar
  37. 37.
    Ali ZA, Maehara A, Genereux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, Guagliumi G, Meraj PM, Alfonso F, Samady H, Akasaka T, Carlson EB, Leesar MA, Matsumura M, Ozan MO, Mintz GS, Ben-Yehuda O, Stone GW. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ilumien iii: Optimize pci): a randomised controlled trial. Lancet. 2016;388:2618–28.CrossRefGoogle Scholar
  38. 38.
    Saita T, Fujii K, Hao H, Imanaka T, Shibuya M, Fukunaga M, Miki K, Tamaru H, Horimatsu T, Nishimura M, Sumiyoshi A, Kawakami R, Naito Y, Kajimoto N, Hirota S, Masuyama T. Histopathological validation of optical frequency domain imaging to quantify various types of coronary calcifications. Eur Heart J Cardiovasc Imaging. 2017;18:342–9.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineUniversity Hospitals LeuvenLeuvenBelgium

Personalised recommendations