Histology Validation of Optical Coherence Tomography Images

  • Teruyoshi Kume
  • Takashi KuboEmail author
  • Takashi Akasaka


Optical coherence tomography (OCT) can reliably visualize the microstructure (i.e., 10–50 μm) of normal and atherosclerotic arteries. Typically, the media of the coronary artery appears as a lower signal intensity band relative to that of the intima and adventitia, providing a three-layered appearance (bright–dark–bright). In OCT images, fibrous plaques exhibit homogeneous, signal-rich (highly backscattering) regions; lipid-rich plaques exhibit signal-poor regions (lipid pools) with poorly defined borders and overlying signal-rich bands (corresponding to fibrous caps); and fibrocalcific plaques exhibit signal-poor regions with sharply delineated upper and/or lower borders. Studies have also assessed the ability of OCT to detect vulnerable plaque. A thin fibrous cap of vulnerable plaque, commonly named thin-cap fibroatheroma (TCFA), has a fibrous cap thickness of <65 μm. Although the ability of OCT to characterize a lipid pool containing necrotic core needs to be clarified in future histologic studies, OCT could visualize thin (<65 μm) fibrous cap overlying the necrotic core and thus detect TCFA. Infiltration of macrophages within the fibrous cap is another characteristic of vulnerable plaque. In OCT images, macrophage accumulation is seen as signal-rich, confluent punctuate regions that exceed the intensity of background speckle noise. The unique capabilities of OCT as an investigational tool for high-risk lesions will serve the cardiology community well, as it advances us toward a better understanding of atherosclerotic plaque. This information will improve our ability to more precisely treat our patients, both acutely and in the long term.


Intimal thickening Fibrous plaque Lipid-rich plaque Fibrocalcific plaque Thin-cap fibroatheroma Macrophage Neoangiogenesis Red thrombus White thrombus Neointima 


  1. 1.
    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59(12):1058–72.CrossRefGoogle Scholar
  2. 2.
    Tuzcu EM, Kapadia SR, Tutar E, Ziada KM, Hobbs RE, McCarthy PM, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103(22):2705–10.CrossRefGoogle Scholar
  3. 3.
    Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74(6):1399–406.CrossRefGoogle Scholar
  4. 4.
    Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, et al. Assessment of coronary intima–media thickness by optical coherence tomography: comparison with intravascular ultrasound. Circ J. 2005;69(8):903–7.CrossRefGoogle Scholar
  5. 5.
    Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–5.CrossRefGoogle Scholar
  6. 6.
    Kume T, Okura H, Kawamoto T, Akasaka T, Toyota E, Watanabe N, et al. Relationship between coronary remodeling and plaque characterization in patients without clinical evidence of coronary artery disease. Atherosclerosis. 2008;197(2):799–805.CrossRefGoogle Scholar
  7. 7.
    Kume T, Okura H, Kawamoto T, Yamada R, Miyamoto Y, Hayashida A, et al. Assessment of the coronary calcification by optical coherence tomography. EuroIntervention. 2011;6(6):768–72.CrossRefGoogle Scholar
  8. 8.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.PubMedGoogle Scholar
  9. 9.
    Vancraeynest D, Pasquet A, Roelants V, Gerber BL, Vanoverschelde JL. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57(20):1961–79.CrossRefGoogle Scholar
  10. 10.
    Cheruvu PK, Finn AV, Gardner C, Caplan J, Goldstein J, Stone GW, et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol. 2007;50(10):940–9.CrossRefGoogle Scholar
  11. 11.
    Kume T, Okura H, Yamada R, Kawamoto T, Watanabe N, Neishi Y, et al. Frequency and spatial distribution of thin-cap fibroatheroma assessed by 3-vessel intravascular ultrasound and optical coherence tomography: an ex vivo validation and an initial in vivo feasibility study. Circ J. 2009;73(6):1086–91.CrossRefGoogle Scholar
  12. 12.
    Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J. 2006;152(4):755 e1–4.CrossRefGoogle Scholar
  13. 13.
    Fujii K, Kawasaki D, Masutani M, Okumura T, Akagami T, Sakoda T, et al. OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc Imaging. 2010;3(2):168–75.CrossRefGoogle Scholar
  14. 14.
    Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107(1):113–9.CrossRefGoogle Scholar
  15. 15.
    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.CrossRefGoogle Scholar
  16. 16.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61.CrossRefGoogle Scholar
  17. 17.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336(18):1276–82.CrossRefGoogle Scholar
  18. 18.
    Vorpahl M, Nakano M, Virmani R. Small black holes in optical frequency domain imaging matches intravascular neoangiogenesis formation in histology. Eur Heart J. 2010;31(15):1889.CrossRefGoogle Scholar
  19. 19.
    Tian J, Hou J, Xing L, Kim SJ, Yonetsu T, Kato K, et al. Significance of intraplaque neovascularisation for vulnerability: optical coherence tomography study. Heart. 2012;98(20):1504–9.CrossRefGoogle Scholar
  20. 20.
    Uemura S, Ishigami K, Soeda T, Okayama S, Sung JH, Nakagawa H, et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J. 2012;33(1):78–85.CrossRefGoogle Scholar
  21. 21.
    Abela GS, Aziz K, Vedre A, Pathak DR, Talbott JD, Dejong J. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol. 2009;103(7):959–68.CrossRefGoogle Scholar
  22. 22.
    Nishimura S, Ehara S, Hasegawa T, Matsumoto K, Yoshikawa J, Shimada K. Cholesterol crystal as a new feature of coronary vulnerable plaques: An optical coherence tomography study. J Cardiol. 2017;69(1):253–9.CrossRefGoogle Scholar
  23. 23.
    Kume T, Akasaka T, Kawamoto T, Ogasawara Y, Watanabe N, Toyota E, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97(12):1713–7.CrossRefGoogle Scholar
  24. 24.
    Kume T, Okura H, Fukuhara K, Koyama T, Nezuo S, Neishi Y, et al. A unique feature of thin flat thrombus visualised by optical coherence tomography. EuroIntervention. 2013;9(8):1008.CrossRefGoogle Scholar
  25. 25.
    Kang SJ, Nakano M, Virmani R, Song HG, Ahn JM, Kim WJ, et al. OCT findings in patients with recanalization of organized thrombi in coronary arteries. JACC Cardiovasc Imaging. 2012;5(7):725–32.CrossRefGoogle Scholar
  26. 26.
    Shimokado A, Matsuo Y, Kubo T, Nishiguchi T, Taruya A, Teraguchi I, et al. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques. Atherosclerosis. 2018;275:35–42.CrossRefGoogle Scholar
  27. 27.
    Hou J, Jia H, Liu H, Han Z, Yang S, Xu C, et al. Neointimal tissue characteristics following sirolimus-eluting stent implantation: OCT quantitative tissue property analysis. Int J Cardiovasc Imaging. 2012;28(8):1879–86.CrossRefGoogle Scholar
  28. 28.
    Gonzalo N, Serruys PW, Okamura T, van Beusekom HM, Garcia-Garcia HM, van Soest G, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J. 2009;158(2):284–93.CrossRefGoogle Scholar
  29. 29.
    Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Sukmawan R, et al. Visualization of neointima formation by optical coherence tomography. Int Heart J. 2005;46(6):1133–6.CrossRefGoogle Scholar
  30. 30.
    Nagai H, Ishibashi-Ueda H, Fujii K. Histology of highly echolucent regions in optical coherence tomography images from two patients with sirolimus-eluting stent restenosis. Catheter Cardiovasc Interv. 2010;75(6):961–3.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of CardiologyKawasaki Medical SchoolKurashikiJapan
  2. 2.Department of Cardiovascular MedicineWakayama Medical UniversityWakayamaJapan

Personalised recommendations