Advertisement

Future Development

  • Martin Villiger
  • Jian Ren
  • Néstor Uribe-Patarroyo
  • Brett E. BoumaEmail author
Chapter

Abstract

Engineers and physicists around the world are working on the next generation of intravascular OCT to advance our understanding of coronary atherosclerosis and improve patient management. This chapter discusses the factors that define the performance and capabilities of current intravascular OCT and reviews ongoing development efforts to overcome these limitations. While it is inherently challenging to predict the next technological breakthrough, some of these developments are likely to impact the future of intravascular imaging.

Keywords

Automated segmentation Artificial neural network Biomechanics Blood flow Extended focus Functional assessment IVUS Micromotor Multifactorial stress equation Multimodality Optical coherence tomography Polarimetry Polarization Polarization sensitive optical coherence tomography 

References

  1. 1.
    Klein T, Huber R. High-speed OCT light sources and systems [Invited]. Biomed Opt Express. 2017;8(2):828.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Kawase Y, Suzuki Y, Ikeno F, Yoneyama R, Hoshino K, Ly HQ, et al. Comparison of nonuniform rotational distortion between mechanical IVUS and OCT using a phantom model. Ultrasound Med Biol. 2007;33(1):67–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Cho HS, Jang S-J, Kim K, Dan-Chin-Yu AV, Shishkov M, Bouma BE, et al. High frame-rate intravascular optical frequency-domain imaging in vivo. Biomed Opt Express. 2014;5(1):223.CrossRefGoogle Scholar
  4. 4.
    Kim TS, Park H-S, Jang S-J, Song JW, Cho HS, Kim S, et al. Single cardiac cycle three-dimensional intracoronary optical coherence tomography. Biomed Opt Express. 2016;7(12):4847.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wang T, Wieser W, Springeling G, Beurskens R, Lancee CT, Pfeiffer T, et al. Intravascular optical coherence tomography imaging at 3200 frames per second. Opt Lett. 2013;38(10):1715.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang T, van Soest G, van der Steen AFW. A micromotor catheter for intravascular optical coherence tomography. Engineering. 2015;1(1):015–7.CrossRefGoogle Scholar
  7. 7.
    Wang T, Pfeiffer T, Regar E, Wieser W, van Beusekom H, Lancee CT, et al. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography. Biomed Opt Express. 2015;6(12):5021.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wang T, Pfeiffer T, Regar E, Wieser W, van Beusekom H, Lancee CT, et al. Heartbeat OCT and motion-free 3D in vivo coronary artery microscopy. JACC Cardiovasc Imaging. 2016;9(5):622–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Drexler W, Morgner U, Kärtner FX, Pitris C, Boppart SA, Li XD, et al. In vivo ultrahigh-resolution optical coherence tomography. Opt Lett. 1999;24(17):1221.PubMedCrossRefGoogle Scholar
  10. 10.
    Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett. 2001;26(9):608–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Kassani SH, Villiger M, Uribe-Patarroyo N, Jun C, Khazaeinezhad R, Lippok N, et al. Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging. Opt Express. 2017;25(7):8255.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ding Z, Ren H, Zhao Y, Nelson JS, Chen Z. High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt Lett. 2002;27(4):243.PubMedCrossRefGoogle Scholar
  13. 13.
    Leitgeb RA, Villiger M, Bachmann AH, Steinmann L, Lasser T. Extended focus depth for Fourier domain optical coherence microscopy. Opt Lett. 2006;31(16):2450–2.PubMedCrossRefGoogle Scholar
  14. 14.
    Ralston TS, Marks DL, Carney PS, Boppart SA. Interferometric synthetic aperture microscopy. Nat Phys. 2007;3(2):129–34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med. 2011;17(8):1010–4.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Nishimiya K, Yin B, Piao Z, Ryu J, Osman H, Leung HM, et al. Micro-optical coherence tomography for endothelial cell visualization in the coronary arteries. JACC Cardiovasc Imaging. 2019.  https://doi.org/10.1016/j.jcmg.2019.01.021PubMedGoogle Scholar
  17. 17.
    Luo Y, Bo E, Liang H, Wang X, Yu X, Cui D, et al. Imaging cellular structures of atherosclerotic coronary arteries using circumferentially scanning micro-optical coherence tomography fiber probe ex vivo. IEEE Access. 2018;6:62988–94.CrossRefGoogle Scholar
  18. 18.
    Yin B, Hyun C, Gardecki JA, Tearney GJ. Extended depth of focus for coherence-based cellular imaging. Optica. 2017;4(8):959.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ahmad A, Shemonski ND, Adie SG, Kim H-S, Hwu W-MW, Carney PS, et al. Real-time in vivo computed optical interferometric tomography. Nat Phot. 2013;7(6):444–8.CrossRefGoogle Scholar
  20. 20.
    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies. J Am Coll Cardiol. 2012;59(12):1058–72.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Schiele F, Meneveau N, Vuillemenot A, Zhang DD, Gupta S, Mercier M, et al. Impact of intravascular ultrasound guidance in stent deployment on 6- month restenosis rate: a multicenter, randomized study comparing two strategies—with and without intravascular ultrasound guidance. J Am Coll Cardiol. 1998;32:320–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (ivus)31When citing this document, the American College of Cardiology would appreciate the follow. J Am Coll Cardiol. 2001;37(5):1478–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Smilowitz NR, Mohananey D, Razzouk L, Weisz G, Slater JN. Impact and trends of intravascular imaging in diagnostic coronary angiography and percutaneous coronary intervention in inpatients in the United States. Catheter Cardiovasc Interv. 2018;92(6):E410–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Sawada T, Shite J, Garcia-Garcia HM, Shinke T, Watanabe S, Otake H, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J. 2008;29(9):1136–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Gonzalo N, Garcia-Garcia HM, Regar E, Barlis P, Wentzel J, Onuma Y, et al. In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Imaging. 2009;2(4):473–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Fujii K, Hao H, Shibuya M, Imanaka T, Fukunaga M, Miki K, et al. Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA. JACC Cardiovasc Imaging. 2015;8(4):451–60.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Doradla P, Otsuka K, Nadkarni A, Villiger M, Karanasos A, LJC van Zandvoort, et al. Biomechanical stress profiling of coronary atherosclerosis: identifying a multifactorial metric to evaluate plaque rupture risk. JACC Cardiovasc Imaging. 2019.  https://doi.org/10.1016/j.jcmg.2019.01.033
  28. 28.
    Räber L, Heo JH, Radu MD, Garcia-Garcia HM, Stefanini GG, Moschovitis A, et al. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques. EuroIntervention. 2012;8(1):98–108.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bourantas CV, Jaffer FA, Gijsen FJ, Van Soest G, Madden SP, Courtney BK, et al. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J. 2017;38:400–12.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Yin J, Yang H-C, Li X, Zhang J, Zhou Q, Hu C, et al. Integrated intravascular optical coherence tomography ultrasound imaging system. J Biomed Opt. 2010;15(1):010512.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li J, Ma T, Mohar D, Steward E, Yu M, Piao Z, et al. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci Rep. 2016;5(1):18406.CrossRefGoogle Scholar
  32. 32.
    Yang H-C, Yin J, Hu C, Cannata J, Zhou Q, Zhang J, et al. A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(12):2839–43.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Li X, Yin J, Hu C, Zhou Q, Shung KK, Chen Z. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Appl Phys Lett. 2010;97(13):133702.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yin J, Li X, Jing J, Li J, Mukai D, Mahon S, et al. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J Biomed Opt. 2011;16(6):060505.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Li J, Ma T, Jing J, Zhang J, Patel PM, Kirk Shung K, et al. Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display. J Biomed Opt. 2013;18(10):100502.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Li BH, Leung ASO, Soong A, Munding CE, Lee H, Thind AS, et al. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis. Catheter Cardiovasc Interv. 2013;81(3):494–507.PubMedCrossRefGoogle Scholar
  37. 37.
    Li J, Li X, Mohar D, Raney A, Jing J, Zhang J, et al. Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis. JACC Cardiovasc Imaging. 2014;7(1):101–3.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sheth TN, Pinilla-Echeverri N, Mehta SR, Courtney BK. First-in-human images of coronary atherosclerosis and coronary stents using a novel hybrid intravascular ultrasound and optical coherence tomographic catheter. JACC Cardiovasc Interv. 2018;11(23):2427–30.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fleming CP, Eckert J, Halpern EF, Gardecki JA, Tearney GJ. Depth resolved detection of lipid using spectroscopic optical coherence tomography. Biomed Opt Express. 2013;4(8):1269.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nam HS, Song JW, Jang S-J, Lee JJ, Oh W-Y, Kim JW, et al. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography. J Biomed Opt. 2016;21(7):075004.CrossRefGoogle Scholar
  41. 41.
    Tanaka M, Hirano M, Murashima K, Obi H, Yamaguchi R, Hasegawa T. 17-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel. Opt Express. 2015;23(5):6645.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Adler DC, Huang S-W, Huber R, Fujimoto JG. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt Express. 2008;16(7):4376.PubMedCrossRefGoogle Scholar
  43. 43.
    Skala MC, Crow MJ, Wax A, Izatt JA. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold Nanospheres. Nano Lett. 2008;8(10):3461–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kim S, Lee MW, Kim TS, Song JW, Nam HS, Cho HS, et al. Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural–molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery. Eur Heart J. 2016;37(37):2833–44.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ughi GJ, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging. JACC Cardiovasc Imaging. 2016;9(11):1304–14.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Fard AM, Vacas-Jacques P, Hamidi E, Wang H, Carruth RW, Gardecki JA, et al. Optical coherence tomography – near infrared spectroscopy system and catheter for intravascular imaging. Opt Express. 2013;21(25):30849.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hee MR, Swanson EA, Fujimoto JG, Huang D. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J Opt Soc Am B. 1992;9(6):903.CrossRefGoogle Scholar
  48. 48.
    de Boer JF, Milner TE, van Gemert MJC, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett. 1997;22(12):934.PubMedCrossRefGoogle Scholar
  49. 49.
    de Boer JF, Hitzenberger CK, Yasuno Y. Polarization sensitive optical coherence tomography – a review [Invited]. Biomed Opt Express. 2017;8(3):1838.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Giattina SD, Courtney BK, Herz PR, Harman M, Shortkroff S, Stamper DL, et al. Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int J Cardiol. 2006;107(3):400–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Nadkarni SK, Pierce MC, Park BH, de Boer JF, Whittaker P, Bouma BE, et al. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol. 2007;49:1474–81.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kuo W-C, Chou N-K, Chou C, Lai C-M, Huang H-J, Wang S-S, et al. Polarization-sensitive optical coherence tomography for imaging human atherosclerosis. Appl Opt. 2007;46(13):2520.PubMedCrossRefGoogle Scholar
  53. 53.
    Saxer CE, de Boer JF, Park BH, Zhao Y, Chen Z, Nelson JS. High-speed fiber–based polarization-sensitive optical coherence tomography of in vivo human skin. Opt Lett. 2000;25(18):1355.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang EZ, Vakoc BJ. Polarimetry noise in fiber-based optical coherence tomography instrumentation. Opt Express. 2011;19(18):16830–42.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Villiger M, Zhang EZ, Nadkarni S, Oh W-Y, Bouma BE, Vakoc BJ. Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion. Opt Lett. 2013;38(6):923.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Villiger M, Zhang EZ, Nadkarni SK, Oh W-Y, Vakoc BJ, Bouma BE. Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging. Opt Express. 2013;21(14):16353–69.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Villiger M, Otsuka K, Karanasos A, Doradla P, Ren J, Lippok N, et al. Coronary plaque microstructure and composition modify optical polarization. JACC Cardiovasc Imaging. 2018;11(11):1666–76.PubMedCrossRefGoogle Scholar
  58. 58.
    van der Sijde JN, Karanasos A, Villiger M, Bouma BE, Regar E. First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo. Eur Heart J. 2016;37(24):1932.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Otsuka K, Villiger M, Bouma B. Intravascular polarimetry in patients with coronary artery disease. JACC Cardiovasc Imaging. Accepted for publication (2019).Google Scholar
  60. 60.
    Villiger M, Otsuka K, Karanasos A, Doradla P, Ren J, Lippok N, et al. Repeatability assessment of intravascular polarimetry in patients. IEEE Trans Med Imaging. 2018;37:1618–25.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Villiger M, Braaf B, Lippok N, Otsuka K, Nadkarni SK, Bouma BE. Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography. Optica. 2018;5(10):1329–37.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Räber L, Mintz GS, Koskinas KC, Johnson TW, Holm NR, Onuma Y, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2018;39:3281–300.PubMedCrossRefGoogle Scholar
  63. 63.
    Manfrini O, Mont E, Leone O, Arbustini E, Eusebi V, Virmani R, et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol. 2006;98(2):156–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kim S-J, Lee H, Kato K, Yonetsu T, Xing L, Zhang S, et al. Reproducibility of in vivo measurements for fibrous cap thickness and lipid arc by OCT. JACC Cardiovasc Imaging. 2012;5(10):1072–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Kini AS, Vengrenyuk Y, Yoshimura T, Matsumura M, Pena J, Baber U, et al. Fibrous cap thickness by optical coherence tomography in vivo. J Am Coll Cardiol. 2017;69(6):644–57.PubMedCrossRefGoogle Scholar
  66. 66.
    Sihan K, Botha C, Post F, de Winter S, Gonzalo N, Regar E, et al. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography. Catheter Cardiovasc Interv. 2009;74(7):1058–65.PubMedCrossRefGoogle Scholar
  67. 67.
    Tsantis S, Kagadis GC, Katsanos K, Karnabatidis D, Bourantas G, Nikiforidis GC. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography. Med Phys. 2011;39(1):503–13.CrossRefGoogle Scholar
  68. 68.
    Ughi GJ, Adriaenssens T, Onsea K, Kayaert P, Dubois C, Sinnaeve P, et al. Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage. Int J Cardiovasc Imaging. 2012;28(2):229–41.PubMedCrossRefGoogle Scholar
  69. 69.
    Ughi GJ, Adriaenssens T, Desmet W, D’hooge J. Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo. Biomed Opt Express. 2012;3:3291–303.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wang Z, Kyono H, Bezerra HG, Wang H, Gargesha M, Alraies C, et al. Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images. J Biomed Opt. 2010;15(6):061711.PubMedCrossRefGoogle Scholar
  71. 71.
    van der Meer FJ, Faber DJ, Sassoon DMB, Aalders MC, Pasterkamp G, van Leeuwen TG. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging. 2005;24(10):1369–76.PubMedCrossRefGoogle Scholar
  72. 72.
    Xu C, Schmitt JM, Carlier SG, Virmani R. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. J Biomed Opt. 2008;13(3):034003.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    van Soest G, Goderie T, Regar E, Koljenović S, van Leenders GLJH, Gonzalo N, et al. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt. 2010;15(1):011105.PubMedCrossRefGoogle Scholar
  74. 74.
    Gnanadesigan M, Kameyama T, Karanasos A, van Ditzhuijzen N, van der Sijde J, van Geuns R-J, et al. Automated characterisation of lipid core plaques in vivo by quantitative optical coherence tomography tissue type imaging. EuroIntervention. 2016;12(12):1490–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Gnanadesigan M, Hussain AS, White S, Scoltock S, Baumbach A, van der Steen AFW, et al. Optical coherence tomography attenuation imaging for lipid core detection: an ex-vivo validation study. Int J Cardiovasc Imaging. 2017;33(1):5–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Ughi GJ, Adriaenssens T, Sinnaeve P, Desmet W, D’hooge J. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images. Biomed Opt Express. 2013;4(7):1014.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gargesha M, Shalev R, Prabhu D, Tanaka K, Rollins AM, Costa M, et al. Parameter estimation of atherosclerotic tissue optical properties from three-dimensional intravascular optical coherence tomography. J Med Imaging. 2015;2(1):016001.CrossRefGoogle Scholar
  78. 78.
    Liu S, Sotomi Y, Eggermont J, Nakazawa G, Torii S, Ijichi T, et al. Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images. J Biomed Opt. 2017;22(9):1–16.PubMedGoogle Scholar
  79. 79.
    Rico-Jimenez JJ, Campos-Delgado DU, Villiger M, Otsuka K, Bouma BE, Jo JA. Automatic classification of atherosclerotic plaques imaged with intravascular OCT. Biomed Opt Express. 2016;7(10):4069.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500–10.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Henglin M, Stein G, Hushcha PV, Snoek J, Wiltschko AB, Cheng S. Machine learning approaches in cardiovascular imaging. Circ Cardiovasc Imaging. 2017;10(10):e005614.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Krittanawong C, Zhang HJ, Wang Z, Aydar M, Kitai T. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol. 2017;69(21):2657–64.PubMedCrossRefGoogle Scholar
  84. 84.
    De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Yong YL, Tan LK, McLaughlin RA, Chee KH, Liew YM. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography. J Biomed Opt. 2017;22(12):1.PubMedCrossRefGoogle Scholar
  86. 86.
    Gessert N, Lutz M, Heyder M, Latus S, Leistner DM, Abdelwahed YS, et al. Automatic plaque detection in IVOCT pullbacks using convolutional neural networks. IEEE Trans Med Imaging. 2019;38(2):426–34.PubMedCrossRefGoogle Scholar
  87. 87.
    Nam HS, Kim C-S, Lee JJ, Song JW, Kim JW, Yoo H. Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage. Med Phys. 2016;43(4):1662–75.PubMedCrossRefGoogle Scholar
  88. 88.
    Pijls NHJ, van Schaardenburgh P, Manoharan G, Boersma E, Bech J-W, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J Am Coll Cardiol. 2007;49(21):2105–11.PubMedCrossRefGoogle Scholar
  89. 89.
    Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, Van’t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.PubMedCrossRefGoogle Scholar
  90. 90.
    Pijls NHJ, de Bruyne B, Peels K, van der Voort PH, Bonnier HJRM, Bartunek J, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery Stenoses. N Engl J Med. 1996;334(26):1703–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Yonetsu T, Bouma BE, Kato K, Fujimoto JG, Jang I-K. Optical coherence tomography. Circ J. 2013;77(8):1933–40.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Yong ASC, Ng ACC, Brieger D, Lowe HC, Ng MKC, Kritharides L. Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur Heart J. 2011;32(3):345–53.PubMedCrossRefGoogle Scholar
  93. 93.
    Saad M, Toelg R, Khattab AA, Kassner G, Abdel-Wahab M, Richardt G. Determination of haemodynamic significance of intermediate coronary lesions using three-dimensional coronary reconstruction. EuroIntervention. 2009;5(5):573–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Usui E, Yonetsu T, Kanaji Y, Hoshino M, Yamaguchi M, Hada M, et al. Efficacy of optical coherence tomography-derived morphometric assessment in predicting the physiological significance of coronary stenosis: head-to-head comparison with intravascular ultrasound. EuroIntervention. 2018;13(18):2210–8.CrossRefGoogle Scholar
  95. 95.
    Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodriguez V, Jimenez-Quevedo P, et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol. 2012;59(12):1080–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Shiono Y, Kitabata H, Kubo T, Masuno T, Ohta S, Ozaki Y, et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J. 2012;76(9):2218–25.PubMedCrossRefGoogle Scholar
  97. 97.
    Pyxaras SA, Tu S, Barbato E, Barbati G, Di Serafino L, De Vroey F, et al. Quantitative angiography and optical coherence tomography for the functional assessment of nonobstructive coronary stenoses: comparison with fractional flow reserve. Am Heart J. 2013;166(6):1010–1018.e1.PubMedCrossRefGoogle Scholar
  98. 98.
    Burzotta F, Nerla R, Hill J, Paraggio L, Leone AM, Byrne J, et al. Correlation between frequency-domain optical coherence tomography and fractional flow reserve in angiographically-intermediate coronary lesions. Int J Cardiol. 2018;253:55–60.PubMedCrossRefGoogle Scholar
  99. 99.
    Usui E, Yonetsu T, Kanaji Y, Hoshino M, Yamaguchi M, Hada M, et al. Relationship between optical coherence tomography-derived morphological criteria and functional relevance as determined by fractional flow reserve. J Cardiol. 2018;71(4):359–66.PubMedCrossRefGoogle Scholar
  100. 100.
    Schmitt JM, Petroff C. Method of determining pressure in a vessel as measured by an optical pressure transducer in an optical coherence tomography system. 2014. US patent USOO8676299B2.Google Scholar
  101. 101.
    Ha J, Kim J-S, Lim J, Kim G, Lee S, Lee JS, et al. Assessing computational fractional flow reserve from optical coherence tomography in patients with intermediate coronary stenosis in the left anterior descending artery. Circ Cardiovasc Interv. 2016;9(8):1–8.CrossRefGoogle Scholar
  102. 102.
    Jang S-J, Ahn J-M, Kim B, Gu J-M, Sung HJ, Park S-J, et al. Comparison of accuracy of one-use methods for calculating fractional flow reserve by intravascular optical coherence tomography to that determined by the pressure-wire method. Am J Cardiol. 2017;120(11):1920–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease: role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62(18):1639–53.PubMedCrossRefGoogle Scholar
  104. 104.
    Johnson NP, Gould KL, Di Carli MF, Taqueti VR. Invasive FFR and noninvasive CFR in the evaluation of ischemia what is the future? J Am Coll Cardiol. 2016;67(23):2772–88.PubMedCrossRefGoogle Scholar
  105. 105.
    Kitabata H, Kubo T, Ishibashi K, Komukai K, Tanimoto T, Ino Y, et al. Prognostic value of microvascular resistance index immediately after primary percutaneous coronary intervention on left ventricular remodeling in patients with reperfused anterior acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2013;6(10):1046–54.PubMedCrossRefGoogle Scholar
  106. 106.
    Hennigan B, Layland J, Fearon WF, Oldroyd KG, Hennigan B. Fractional flow reserve and the index of microvascular resistance in patients with acute coronary syndromes. EuroIntervention. 2014;10:T55–63.PubMedCrossRefGoogle Scholar
  107. 107.
    Fearon WF, Farouque HMO, Balsam LB, Cooke DT, Robbins RC, Fitzgerald PJ, et al. Comparison of coronary thermodilution and Doppler velocity for assessing coronary flow reserve. Circulation. 2003;108(18):2198–200.PubMedCrossRefGoogle Scholar
  108. 108.
    De Bruyne B, Pijls NHJ, Smith L, Wievegg M, Heyndrickx GR. Coronary Thermodilution to assess flow reserve experimental validation. Circulation. 2001;104(17):2003–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Pijls NHJ, De Bruyne B, Smith L, Aarnoudse W, Barbato E, Bartunek J, et al. Coronary thermodilution to assess flow reserve. Circulation. 2002;105(21):2482–6.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Neishi Y, Akasaka T, Koyama Y, Akiyama M, Watanabe N, Kamiyama N, et al. Measurement of coronary flow reserve by pressure/temperature sensor guide wire-based thermodilution in experimental models. J Cardiol. 2002;40(6):249–57.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Sun C, Nolte F, Cheng KHY, Vuong B, Lee KKC, Standish BA, et al. In vivo feasibility of endovascular Doppler optical coherence tomography. Biomed Opt Express. 2012;3(10):2600–10.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sun C, Nolte F, Vuong B, Cheng KHY, Lee KKC, Standish BA, et al. Blood flow velocity measurement by endovascular Doppler optical coherence tomography. In: Photonic therapeutics and diagnostics IX, vol. 8565. Bellingham: International Society for Optics and Photonics; 2013. p. 85654S–6.CrossRefGoogle Scholar
  113. 113.
    Kinlay S, Grewal J, Manuelin D, Fang JC, Selwyn AP, Bittl JA, et al. Coronary flow velocity and disturbed flow predict adverse clinical outcome after coronary angioplasty. Arterioscler Thromb Vasc Biol. 2002;22(8):1334–40.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Varghese SS, Frankel SH, Fischer PF. Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech. 2007;582:253.CrossRefGoogle Scholar
  115. 115.
    Varghese SS, Frankel SH, Fischer PF. Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J Fluid Mech. 2007;582:281.CrossRefGoogle Scholar
  116. 116.
    Huo Y, Wischgoll T, Kassab GS. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am J Physiol Heart Circ Physiol. 2007;293(5):H2959–70.PubMedCrossRefGoogle Scholar
  117. 117.
    Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87.PubMedCrossRefGoogle Scholar
  118. 118.
    Li W, van der Steen AFW, Lancée CT, Céspedes I, Bom N. Blood flow imaging and volume flow quantitation with intravascular ultrasound. Ultrasound Med Biol. 1998;24(2):203–14.PubMedCrossRefGoogle Scholar
  119. 119.
    Lupotti FA, Mastik F, Carlier SG, de Korte CL, van der Giessen WJ, Serruys PW, et al. Quantitative IVUS blood flow: validation in vitro, in animals and in patients. Ultrasound Med Biol. 2003;29(4):507–15.PubMedCrossRefGoogle Scholar
  120. 120.
    Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.PubMedCrossRefGoogle Scholar
  121. 121.
    Uribe-Patarroyo N, Villiger M, Bouma BE. Quantitative technique for robust and noise-tolerant speed measurements based on speckle decorrelation in optical coherence tomography. Opt Express. 2014;22(20):24411.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Uribe-Patarroyo N, Bouma BE. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating. Phys Rev E. 2016;94(2):22604.CrossRefGoogle Scholar
  123. 123.
    Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–71.PubMedCrossRefGoogle Scholar
  124. 124.
    Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.PubMedCrossRefGoogle Scholar
  125. 125.
    Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.PubMedCrossRefGoogle Scholar
  126. 126.
    Larin KV, Sampson DD. Optical coherence elastography – OCT at work in tissue biomechanics [Invited]. Biomed Opt Express. 2017;8(2):1172.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wang T, Pfeiffer T, Wu M, Wieser W, Amenta G, Draxinger W, et al. Thermo-elastic optical coherence tomography. Opt Lett. 2017;42(17):3466.PubMedCrossRefGoogle Scholar
  128. 128.
    Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res. 1992;71:580–858.CrossRefGoogle Scholar
  129. 129.
    Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation. 1993;87:1179–87.PubMedCrossRefGoogle Scholar
  130. 130.
    Ohayon J, Finet G, Gharib AM, Herzka DA, Tracqui P, Heroux J, et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Circ Physiol. 2008;295:H717–27.CrossRefGoogle Scholar
  131. 131.
    Brown AJ, Teng Z, Calvert PA, Rajani NK, Hennessy O, Nerlekar N, et al. Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging. Circ Cardiovasc Imaging. 2016;9(6):1–9.CrossRefGoogle Scholar
  132. 132.
    Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NEJ, et al. Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging. 2017;10(12):1472–83.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Martin Villiger
    • 1
  • Jian Ren
    • 1
  • Néstor Uribe-Patarroyo
    • 1
  • Brett E. Bouma
    • 1
    • 2
    Email author
  1. 1.Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations