Advertisement

Multimodality Intravascular OCT Imaging

  • Kensuke Nishimiya
  • Guillermo TearneyEmail author
Chapter

Abstract

The improved resolution and the clarity of intravascular optical coherence tomography (IVOCT) images compared to intravascular ultrasound has allowed it to emerge as a significant technology for coronary wall evaluation. Nonetheless, accuracy and ease of IVOCT image interpretation remain challenging in real-world, clinical practice. This issue has motivated the development of next-generation, multimodality IVOCT imaging that adds complementary optical or ultrasound techniques to improve diagnostic accuracy/interpretation. This chapter reviews recent advances and ongoing work in the field of multimodality intravascular IVOCT imaging. These new technologies promise to improve adoption of IVOCT by providing more information, increasing accuracy, and making it easier for interventional cardiologists to deploy IVOCT for best care of patients.

Keywords

Multimodality Inflammation Lipid Intraplaque hemorrhage Fluorescence Indocyanine green Auto-fluorescence Fluorescence lifetime Spectroscopy 

References

  1. 1.
    Brezinski ME, Tearney GJ, Weissman NJ, Boppart SA, Bouma BE, Hee MR, et al. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart. 1997;77(5):397–403.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276:2037–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kawasaki M, Bouma BE, Bressner J, Houser SL, Nadkarni SK, MacNeill BD, et al. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol. 2006;48:81–8.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59:1058–72.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Prati F, Guagliumi G, Mintz GS, Costa M, Regar E, Akasaka T, et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J. 2012;33:2513–20.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Suter MJ, Kashiwagi M, Gallagher KA, Nadkarni SK, Asanani N, Tanaka A, et al. Optimizing flushing parameters in intracoronary optical coherence tomography: an in vivo swine study. Int J Cardiovasc Imaging. 2015;31:1097–106.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bourantas CV, Jaffer FA, Gijsen FJ, van Soest G, Madden SP, Courtney BK, et al. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J. 2017;38:400–12.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Manfrini O, Mont E, Leone O, Arbustini E, Eusebi V, Virmani R, et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol. 2006;98:156–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Maehara A, Matsumura M, Ali ZA, Mintz GS, Stone GW. IVUS-guided versus OCT-guided coronary stent implantation: a critical appraisal. JACC Cardiovasc Imaging. 2017;10:1487–503.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ali ZA, Karimi Galougahi K, Maehara A, Shlofmitz RA, Ben-Yehuda O, Mintz GS, et al. Intracoronary optical coherence tomography 2018: current status and future directions. JACC Cardiovasc Interv. 2017;10:2473–87.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kubo T, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, et al. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J. 2017;38:3139–47.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ali ZA, Maehara A, Généreux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZEPCI): a randomized controlled trial. Lancet. 2016;388:2618–28.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31:401–15.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    van Soest G, Regar E, Goderie TP, Gonzalo N, Koljenović S, van Leenders GJ. Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries. JACC Cardiovasc Imaging. 2011;4:810–3.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Adriaenssens T, Ughi GJ, et al. Recent advances in the field of optical coherence tomography. Curr Cardiovasc Imaging Rep. 2017;10:23.CrossRefGoogle Scholar
  20. 20.
    Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging. 2008;1:752–61.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ughi GJ, Verjans J, Fard AM, Wang H, Osborn E, Hara T, et al. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging. Int J Cardiovasc Imaging. 2015;31:259–68.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Yoo H, Kim JW, Shishkov M, Namati E, Morse T, Shubochkin R, et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med. 2011;17:1680–4.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ryu SY, Choi HY, Na J, Choi ES, Lee BH. Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber. Opt Lett. 2008;33:2347–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kim S, Lee MW, Kim TS, Song JW, Nam HS, Cho HS. Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery. Eur Heart J. 2016;37:2833–44.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kim JB, Park K, Ryu J, Lee JJ, Lee MW, Cho HS, et al. Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors. Sci Rep. 2016;6:22608.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lee S, Lee MW, Cho HS, Song JW, Nam HS, Oh DJ, et al. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence–emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv. 2014;7:560–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, et al. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation. 2008;118:1802–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003;13:195–208.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hara T, Ughi GJ, McCarthy JR, Erdem SS, Mauskapf A, Lyon SC, et al. Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur Heart J. 2017;38:447–55.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Matsumoto D, Shite J, Shinke T, Otake H, Tanino Y, Ogasawara D, et al. Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. Eur Heart J. 2007;28:961–7.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Reinhart MB, Huntington CR, Blair LJ, Heniford BT, Augenstein VA. Indocyanine green: historical context, current applications, and future considerations. Surg Innov. 2016;23:166–75.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, et al. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011;3:84ra45.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Verjans JW, Osborn EA, Ughi GJ, Calfon Press MA, Hamidi E, Antoniadis AP, et al. Targeted near-infrared fluorescence imaging of atherosclerosis: clinical and intracoronary evaluation of indocyanine green. JACC Cardiovasc Imaging. 2016;9:1087–95.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wang H, Gardecki JA, Ughi GJ, Jacques PV, Hamidi E, Tearney GJ. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm. Biomed Opt Express. 2015;6:1363–75.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Htun NM, Chen YC, Lim B, Schiller T, Maghzal GJ, Huang AL, et al. Near-infrared autofluorescence induced by intraplaque hemorrhage and hemedegradation as marker for high-risk atherosclerotic plaques. Nat Commun. 2017;8:75.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ughi GJ, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging. JACC Cardiovasc Imaging. 2016;9:1304–14.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Park J, Pande P, Shrestha S, Clubb F, Applegate BE, Jo JA. Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy. Atherosclerosis. 2012;220:394–401.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Bec J, Ma DM, Yankelevich DR, Liu J, Ferrier WT, Southard J, et al. Multispectral fluorescence lifetime imaging system for intravascular diagnostics with ultrasound guidance: in vivo validation in swine arteries. J Biophotonics. 2014;7:281–5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jo JA, Park J, Pande P, Shrestha S, Serafino MJ, Rico Jimenez Jde J, et al. Simultaneous morphological and biochemical endogenous optical imaging of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2015;16:910–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lee MW, Song JW, Kang WJ, Nam HS, Kim TS, Kim S, et al. Comprehensive intravascular imaging of atherosclerotic plaque in vivo using optical coherence tomography and fluorescence lifetime imaging. Sci Rep. 2018;8:14561.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Xu C, Schmitt JM, Carlier SG, Virmani R. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. J Biomed Opt. 2008;13:034003.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Fujii K, Hao H, Shibuya M, Imanaka T, Fukunaga M, Miki K, et al. Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: an ex vivo validation study. JACC Cardiovasc Imaging. 2015;8:451–60.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Nakano M, Yahagi K, Yamamoto H, Taniwaki M, Otsuka F, Ladich ER, et al. Additive value of integrated backscatter IVUS for detection of vulnerable plaque by optical frequency domain imaging: an ex vivo autopsy study of human coronary arteries. JACC Cardiovasc Imaging. 2016;9:163–72.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lowe HC, Narula J, Fujimoto JG, Jang IK. Intracoronary optical diagnostics: current status, limitations, and potential. JACC Cardiovasc Interv. 2011;4:1257–70.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wang J, Geng YJ, Guo B, Klima T, Lal BN, Willerson JT, et al. Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. J Am Coll Cardiol. 2002;39:1305–13.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Waxman S, Dixon SR, L’Allier P, Moses JW, Petersen JL, Cutlip D, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging. 2009;2:858–68.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Oemrawsingh RM, Cheng JM, García-García HM, van Geuns RJ, de Boer SP, Simsek C, et al. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol. 2014;64:2510–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Schuurman AS, Vroegindewey M, Kardys I, Oemrawsingh RM, Cheng JM, de Boer S, et al. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up. Eur Heart J. 2018;39(4):295–302.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Danek BA, Karatasakis A, Karacsonyi J, Alame A, Resendes E, Kalsaria P, et al. Long-term follow-up after near-infrared spectroscopy coronary imaging: insights from the lipid cORe plaque association with clinical events (ORACLE-NIRS) registry. Cardiovasc Revasc Med. 2017;18:177–81.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging. 2008;1:638–48.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Fard AM, Vacas-Jacques P, Hamidi E, Wang H, Carruth RW, Gardecki JA, et al. Optical coherence tomography--near infrared spectroscopy system and catheter for intravascular imaging. Opt Express. 2013;21:30849–58.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yonetsu T, Suh W, Abtahian F, Kato K, Vergallo R, Kim SJ, et al. Comparison of near-infrared spectroscopy and optical coherence tomography for detection of lipid. Catheter Cardiovasc Interv. 2014;84:710–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yin J, Yang HC, Li X, Zhang J, Zhou Q, Hu C, et al. Integrated intravascular optical coherence tomography ultrasound imaging system. J Biomed Opt. 2010;15:010512.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yin J, Li X, Jing J, Li J, Mukai D, Mahon S, et al. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J Biomed Opt. 2011;16:060505.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Li J, Li X, Mohar D, Raney A, Jing J, Zhang J, et al. Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis. JACC Cardiovasc Imaging. 2014;7:101–3.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sheth TN, Pinilla-Echeverri N, Mehta SR, Courtney BK. First-in-human images of coronary atherosclerosis and coronary stents using a novel hybrid intravascular ultrasound and optical coherence tomographic catheter. JACC Cardiovasc Interv. 2018;11:2427–30.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Dai X, Yang H, Shan T, Xie H, Berceli SA, Jiang H. Miniature endoscope for multimodal imaging. ACS Photon. 2017;4:174–80.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Wellman Center for Photomedicine, Massachusetts General HospitalBostonUSA
  2. 2.Department of Cardiovascular MedicineTohoku University Graduate School of MedicineSendaiJapan
  3. 3.Department of PathologyMassachusetts General HospitalBostonUSA
  4. 4.Division of Health Sciences and Technology DivisionHarvard-MITCambridgeUSA

Personalised recommendations