The Development of Optical Coherence Tomography

  • James G. FujimotoEmail author
  • Joseph Schmitt
  • Eric Swanson
  • Aaron D. Aguirre
  • Ik-Kyung Jang


Optical coherence tomography (OCT) enables cross-sectional, volumetric, and functional imaging of internal microstructure and pathology in biological tissues. OCT can perform an “optical biopsy”, imaging pathology in situ and in real time without the need for excisional biopsy. OCT imaging has become a standard of care in ophthalmology and is an emerging imaging modality in cardiology, dermatology, gastroenterology and other specialties where it provides information that often cannot be obtained by any other means. This chapter reviews the early history of OCT development with an emphasis on basic concepts and the process of technology translation. Early OCT technology and catheter imaging devices as well as advances in imaging speed using swept source/Fourier domain detection are reviewed. The process of clinical translation, beginning with ex vivo imaging and histology, preclinical animal studies and progressing to clinical studies in patients is discussed. The history of commercial intravascular OCT development is also summarized.


Optical coherence tomography OCT Optical biopsy Intravascular OCT Swept source OCT Fourier domain OCT Optical frequency domain imaging OFDI Fiber optic catheter 


  1. 1.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254:1178–81.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995;1:970–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, Southern JF, Fujimoto JG. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation. 1996;93:1206–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57:OCT1–OCT13.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Swanson EA, Fujimoto JG. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact. Biomed Opt Express. 1638–1664;8:2017.Google Scholar
  6. 6.
    Duguay MA. Light photographed in flight. Am Sci. 1971;59:551–6.Google Scholar
  7. 7.
    Duguay MA, Mattick AT. Ultrahigh speed photography of picosecond light pulses and echoes. Appl Opt. 1971;10:2162–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Bruckner AP. Picosecond light scattering measurements of cataract microstructure. Appl Opt. 1978;17:3177–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Park H, Chodorow M, Kompfner R. High resolution optical ranging system. Appl Opt. 1981;20:2389–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Fujimoto JG, De Silvestri S, Ippen EP, Puliafito CA, Margolis R, Oseroff A. Femtosecond optical ranging in biological systems. Opt Lett. 1986;11:150–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Takada K, Yokohama I, Chida K, Noda J. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl Opt. 1987;26:1603–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Youngquist R, Carr S, Davies D. Optical coherence-domain reflectometry: a new optical evaluation technique. Opt Lett. 1987;12:158–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13:1867–9.CrossRefGoogle Scholar
  14. 14.
    Clivaz X, Marquis-Weible F, Salathe RP, Novak RP, Gilgen HH. High-resolution reflectometry in biological tissues. Opt Lett. 1992;17:4–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Swanson EA, Huang D, Hee MR, Fujimoto JG, Lin CP, Puliafito CA. High-speed optical coherence domain reflectometry. Opt Lett. 1992;17:151–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Schmitt JM, Knuttel A, Bonner RF. Measurement of optical-properties of biological tissues by low- coherence reflectometry. Appl Opt. 1993;32:6032–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Tanno N, Ichimura T. Reproduction of optical reflection-intensity-distribution using multi-mode laser coherence. Trans Inst Electron Inf Commun Eng. 1994;J77C-I:415–22.Google Scholar
  18. 18.
    Wang Y, Funaba T, Ichimura T, Tanno N. Optical multimode time-domain reflectometry. Rev Laser Eng. 1995;23:273–9.CrossRefGoogle Scholar
  19. 19.
    Huang D, Wang J, Lin CP, Puliafito CA, Fujimoto JG. Micron-resolution ranging of cornea and anterior chamber by optical reflectometry. Lasers Surg Med. 1991;11:419–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Tanno N, Ichimura T, Saeki A. Device for measuring the light wave of a reflected image. Japan Patent. 1994.Google Scholar
  21. 21.
    Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993;18:1864–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H. In vivo optical coherence tomography. Am J Ophthalmol. 1993;116:113–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113:325–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102:217–29.PubMedCrossRefGoogle Scholar
  25. 25.
    Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG. Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol. 1995;113:1019–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Schuman JS, Swanson EA, Fujimoto JG. Optical coherence tomography of macular holes. Ophthalmology. 1995;102:748–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Hee MR, Baumal CR, Puliafito CA, Duker JS, Reichel E, Wilkins JR, Coker JG, Schuman JS, Swanson EA, Fujimoto JG. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology. 1996;103:1260–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, Swanson EA. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol. 1995;6:89–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995;113:586–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Puliafito CA, Hee MR, Schuman JS, Fujimoto JG. Optical coherence tomography of ocular diseases. Thorofare: Slack Inc.; 1996.Google Scholar
  31. 31.
    Schuman JS, Puliafito CA, Fujimoto JG. Optical coherence tomography of ocular diseases. 2nd ed. Thorofare: Slack Inc.; 2004.Google Scholar
  32. 32.
    Rosenfeld PJ, Windsor MA, Feuer WJ, Sun SJJ, Frick KD, Swanson EA, Huang D. Estimating medicare and patient savings from the use of bevacizumab for the treatment of exudative age-related macular degeneration. Am J Ophthalmol. 2018;191:135–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Windsor MA, Sun SJJ, Frick KD, Swanson EA, Rosenfeld PJ, Huang D. Estimating public and patient savings from basic research-a study of optical coherence tomography in managing antiangiogenic therapy. Am J Ophthalmol. 2018;185:115–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Schmitt JM, Knuttel A, Yadlowsky M, Eckhaus MA. Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys Med Biol. 1705–1720;39:1994.Google Scholar
  35. 35.
    Schmitt JM, Knuttel A. Model of optical coherence tomography of heterogeneous tissue. J Opt Soc Am A. 1997;14:1231–42.CrossRefGoogle Scholar
  36. 36.
    Brezinski ME, Tearney GJ, Boppart SA, Swanson EA, Southern JF, Fujimoto JG. Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics. J Surg Res. 1997;71:32–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG. Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Am J Gastroenterol. 1997;92:1800–4.PubMedGoogle Scholar
  38. 38.
    Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG. Optical biopsy in human urologic tissue using optical coherence tomography. J Urol. 1915–1919;157:1997.Google Scholar
  39. 39.
    Boppart SA, Brezinski ME, Pitris C, Fujimoto JG. Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. Neurosurgery. 1998;43:834–41.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kobayashi K, Izatt JA, Kulkarni MD, Willis J, Sivak MV Jr. High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results. Gastrointest Endosc. 1998;47:515–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Pitris C, Brezinski ME, Bouma BE, Tearney GJ, Southern JF, Fujimoto JG. High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1640–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Pitris C, Goodman A, Boppart SA, Libus JJ, Fujimoto JG, Brezinski ME. High-resolution imaging of gynecologic neoplasms using optical coherence tomography. Obstet Gynecol. 1999;93:135–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Jesser CA, Boppart SA, Pitris C, Stamper DL, Nielsen GP, Brezinski ME, Fujimoto JG. High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Br J Radiol. 1999;72:1170–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Boppart SA, Goodman A, Libus J, Pitris C, Jesser CA, Brezinski ME, Fujimoto JG. High resolution imaging of endometriosis and ovarian carcinoma with optical coherence tomography: feasibility for laparoscopic-based imaging. Br J Obstet Gynaecol. 1999;106:1071–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Pitris C, Jesser C, Boppart SA, Stamper D, Brezinski ME, Fujimoto JG. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. J Gastroenterol. 2000;35:87–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Brezinski ME, Tearney GJ, Bouma BE, Boppart SA, Hee MR, Swanson EA, Southern JF, Fujimoto JG. High-resolution imaging of plaque morphology with optical coherence tomography. Circulation. 1995;92:103.Google Scholar
  47. 47.
    Swanson EA, Huang D, Fujimoto JG, Puliafito CA, Lin CP, Schuman JS. Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample. United States Patent 5,321,501, 1994.Google Scholar
  48. 48.
    Swanson EA, Huang D, Fujimoto JG, Puliafito CA, Lin CP, Schuman JS. Method and apparatus for performing optical measurements. US Patent 5,459,570, October 14, 1995.Google Scholar
  49. 49.
    Tearney GJ, Boppart SA, Bouma BE, Brezinski ME, Weissman NJ, Southern JF, Fujimoto JG. Scanning single mode catheter/endoscope for optical coherence tomography. Opt Lett. 1996;21:543–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Tearney GJ, Brezinski ME, Boppart SA, Bouma BE, Weissman N, Southern JF, Swanson EA, Fujimoto JG. Catheter-based optical imaging of a human coronary artery. Circulation. 1996;94:3013.PubMedCrossRefGoogle Scholar
  51. 51.
    Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitvis C, Southern JF, Fujimoto JG. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276:2037–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bouma BE, Tearney GJ. Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography. Opt Lett. 1999;24:531–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Swanson EA, Petersen C, McNamara E, Lamport R, Kelly D. Ultra-small optical probes, imaging optics, and methods for using same. US Patent 6,445,939, August 9, 1999.Google Scholar
  54. 54.
    Sergeev AM, Gelikonov VM, Gelikonov GV, Feldchtein FI, Kuranov RV, Gladkova ND, Shakhova NM, Suopova LB, Shakhov AV, Kuznetzova IA, Denisenko AN, Pochinko VV, Chumakov YP, Streltzova OS. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt Express. 1997;1:432–40.CrossRefPubMedGoogle Scholar
  55. 55.
    Feldchtein FI, Gelikonov GV, Gelikonov VM, Kuranov RV, Sergeev AM, Gladkova ND, Shakhov AV, Shakhova NM, Snopova LB, Terent’eva AB, Zagainova EV, Chumakov YP, Kuznetzova IA. Endoscopic applications of optical coherence tomography. Opt Express. 1998;3:257.PubMedCrossRefGoogle Scholar
  56. 56.
    Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pitris C, Brezinski ME. High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart. 1999;82:128–33.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Tearney GJ, Jang IK, Kang DH, Aretz HT, Houser SL, Brady TJ, Schlendorf K, Shishkov M, Bouma BE. Porcine coronary imaging in vivo by optical coherence tomography. Acta Cardiol. 2000;55:233–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jang IK, Tearney G, Bouma B. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation. 2001;104:2754.PubMedCrossRefGoogle Scholar
  60. 60.
    Grube E, Gerckens U, Buellesfeld L, Fitzgerald PJ. Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery. Circulation. 2002;106:2409–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY. measurement of intraocular distances by backscattering spectral interferometry. Opt Commun. 1995;117:43–8.CrossRefGoogle Scholar
  63. 63.
    Bail MA, Hausler G, Herrmann JM, Lindner MW, Ringler R. Optical coherence tomography with the “spectral radar”: fast optical analysis in volume scatterers by short-coherence interferometry. In: Presented at the Proc. SPIE 2925, Photon Propagation in Tissues II, Vienna, Austria, 1996.Google Scholar
  64. 64.
    Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22:340–2.CrossRefGoogle Scholar
  65. 65.
    Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt Lett. 1997;22:1704–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002;7:457–63.PubMedCrossRefGoogle Scholar
  67. 67.
    Choma MA, Sarunic MV, Yang CH, Izatt JA. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11:2183–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Leitgeb R, Hitzenberger CK, Fercher AF. Performance of Fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11:889–94.PubMedCrossRefGoogle Scholar
  69. 69.
    de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28:2067–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Yun SH, Tearney GJ, Bouma BE, Park BH, de Boer JF. High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength. Opt Express. 2003;11:3598–604.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Yun SH, Boudoux C, Tearney GJ, Bouma BE. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt Lett. 2003;28:1981–3.PubMedCrossRefGoogle Scholar
  72. 72.
    Yun SH, Tearney GJ, de Boer JF, Iftimia N, Bouma BE. High-speed optical frequency-domain imaging. Opt Express. 2003;11:2953–63.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nassif N, Cense B, Park BH, Yun SH, Chen TC, Bouma BE, Tearney GJ, de Boer JF. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett. 2004;29:480–2.CrossRefGoogle Scholar
  74. 74.
    Wang Z, Potsaid B, Chen L, Doerr C, Lee HC, Nielson T, Jayaraman V, Cable AE, Swanson E, Fujimoto JG. Cubic meter volume optical coherence tomography. Optica. 2016;3:1496–503.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wang Z, Lee HC, Vermeulen D, Chen L, Nielsen T, Park SY, Ghaemi A, Swanson E, Doerr C, Fujimoto J. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection. Biomed Opt Express. 2015;6:2562–74.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Eickhoff W, Ulrich R. Optical frequency-domain reflectometry in single-mode fiber. Appl Phys Lett. 1981;39:693–5.CrossRefGoogle Scholar
  77. 77.
    Barfuss H, Brinkmeyer E. Modified optical frequency-domain reflectometry with high spatial-resolution for components of integrated optic systems. J Lightwave Technol. 1989;7:3–10.CrossRefGoogle Scholar
  78. 78.
    Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical wave-guides. J Lightwave Technol. 1993;11:1377–84.CrossRefGoogle Scholar
  79. 79.
    Kachelmyer AL. Range-Doppler imaging: waveforms and receiver design. Proc SPIE. 1998;999:138–61.CrossRefGoogle Scholar
  80. 80.
    Oh WY, Yun SH, Tearney GJ, Bouma BE. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt Lett. 2005;30:3159–61.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, Suter MJ, Chan RC, Evans JA, Jang IK, Nishioka NS, de Boer JF, Bouma BE. Comprehensive volumetric optical microscopy in vivo. Nat Med. 2006;12:1429–33.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Vakoc BJ, Shishko M, Yun SH, Oh WY, Suter MJ, Desjardins AE, Evans JA, Nishioka NS, Tearney GJ, Bouma BE. Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video). Gastrointest Endosc. 2007;65:898–905.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Huber R, Wojtkowski M, Taira K, Fujimoto JG, Hsu K. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt Express. 2005;13:3513–28.PubMedCrossRefGoogle Scholar
  84. 84.
    Huber R, Wojtkowski M, Fujimoto JG. Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt Express. 2006;14:3225–37.PubMedCrossRefGoogle Scholar
  85. 85.
    Huber R, Adler DC, Fujimoto JG. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett. 2006;31:2975–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Adler DC, Chen Y, Huber R, Schmitt J, Connolly J, Fujimoto JG. Three-dimensional endomicroscopy using optical coherence tomography. Nat Photonics. 2007;1:709–16.CrossRefGoogle Scholar
  87. 87.
    Adler DC, Zhou C, Tsai TH, Schmitt J, Huang Q, Mashimo H, Fujimoto JG. Three-dimensional endomicroscopy of the human colon using optical coherence tomography. Opt Express. 2009;17:784–96.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Klein T, Wieser W, Eigenwillig CM, Biedermann BR, Huber R. Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser. Opt Express. 2011;19:3044–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Wang T, Pfeiffer T, Regar E, Wieser W, van Beusekom H, Lancee CT, Springeling G, Krabbendam I, van der Steen AF, Huber R, van Soest G. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography. Biomed Opt Express. 2015;6:5021–32.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wang T, Pfeiffer T, Regar E, Wieser W, van Beusekom H, Lancee CT, Springeling G, Krabbendam-Peters I, van der Steen AF, Huber R, van Soest G. Heartbeat OCT and motion-free 3D in vivo coronary artery microscopy. JACC Cardiovasc Imaging. 2016;9:622–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS, Duker JS, Fujimoto JG. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18:20029–48.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Jayaraman V, Cole GD, Robertson M, Uddin A, Cable A. High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range. Electron Lett. 2012;48:867–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Grulkowski I, Liu JJ, Potsaid B, Jayaraman V, Lu CD, Jiang J, Cable AE, Duker JS, Fujimoto JG. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed Opt Express. 2012;3:2733–51.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Liang K, Traverso G, Lee HC, Ahsen OO, Wang Z, Potsaid B, Giacomelli M, Jayaraman V, Barman R, Cable A, Mashimo H, Langer R, Fujimoto JG. Ultrahigh speed en face OCT capsule for endoscopic imaging. Biomed Opt Express. 2015;6:1146–63.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ahsen OO, Liang K, Lee HC, Giacomelli MG, Wang Z, Potsaid B, Figueiredo M, Huang Q, Jayaraman V, Fujimoto JG, Mashimo H. Assessment of Barrett’s esophagus and dysplasia with ultrahigh-speed volumetric en face and cross-sectional optical coherence tomography. Endoscopy. 2018;51(4):355–9.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Okamura T, Onuma Y, Garcia-Garcia HM, van Geuns RJM, Wykrzykowska JJ, Schultz C, van der Giessen WJ, Ligthart J, Regar E, Serruys PW. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention. 2011;6:1037–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • James G. Fujimoto
    • 1
    Email author
  • Joseph Schmitt
    • 2
  • Eric Swanson
    • 3
  • Aaron D. Aguirre
    • 4
  • Ik-Kyung Jang
    • 4
  1. 1.Department of Electrical Engineering and Computer ScienceResearch Laboratory of Electronics, Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Health Technologies, Apple, Inc.SunnyvaleUSA
  3. 3.Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Division of CardiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations