Skip to main content

Dietary Restriction, Cardiovascular Aging and Age-Related Cardiovascular Diseases: A Review of the Evidence

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Aging and Anti-Aging Research

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1178))

Abstract

Both morbidity and mortality due to cardiovascular diseases (CVDs) elevate with age. The elevated prevalence of cardiovascular risk factors with age and cardiovascular aging contribute to the relationship between aging and CVDs. Dietary restriction (DR) consisting of calorie restriction (CR) and alternate-day fasting (ADF) is an approved nutritional intervention and shows anti-aging impacts. Recent studies demonstrate that DR makes an active defense response in stressful states. At the core of this response are cardiovascular protective signals, which consist of the mammalian target of rapamycin (mTOR), AMP-activated kinase, sirtuins and endothelial nitric oxide synthase. These make a network with positive and negative feedback regulation. Hence, DR is a hopeful intervention for controlling cardiovascular aging and managing individuals with CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varady KA, Hellerstein MK (2007) Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr 86:7–13

    Article  CAS  PubMed  Google Scholar 

  2. Weindruch R, Sohal RS (1997) Caloric intake and aging. N Engl J Med 337:986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mattison JA, Lane MA, Roth GS, Ingram DK (2003) Calorie restriction in rhesus monkeys. Exp Gerontol 38:35–46

    Article  PubMed  Google Scholar 

  4. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    Article  CAS  PubMed  Google Scholar 

  5. McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5:155–171

    CAS  PubMed  Google Scholar 

  6. Shinmura K (2011) Cardiovascular protection afforded by caloric restriction: essential role of nitric oxide synthase. Geriatr Gerontol Int 11:143–156

    Article  PubMed  Google Scholar 

  7. Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. Oxidative Med Cell Longev 2013:528935

    Article  Google Scholar 

  8. Speakman JR, Mitchell SE (2011) Caloric restriction. Mol Asp Med 32:159–221

    Article  CAS  Google Scholar 

  9. Ungvari Z, Parrado-Fernandez C, Csiszar A, De Cabo R (2008) Mechanisms underlying caloric restriction and lifespan regulation. Circ Res 102:519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110:1097–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schroeder JE, Richardson JC, Virley DJ (2010) Dietary manipulation and caloric restriction in the development of mouse models relevant to neurological diseases. Biochim Biophys Acta 1802:840–846

    Article  CAS  PubMed  Google Scholar 

  12. Zanetti M, Cappellari GG, Burekovic I, Barazzoni R, Stebel M, Guarnieri G (2010) Caloric restriction improves endothelial dysfunction during vascular aging: effects on nitric oxide synthase isoforms and oxidative stress in rat aorta. Exp Gerontol 45:848–855

    Article  CAS  PubMed  Google Scholar 

  13. Lakatta EG (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Circulation 107:490–497

    Article  PubMed  Google Scholar 

  14. Lakatta EG (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 107:490–497

    Article  PubMed  Google Scholar 

  15. Hammer S, Snel M, Lamb HJ, Jazet IM, van der Meer RW, Pijl H et al (2008) Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol 52:1006–1012

    Article  CAS  PubMed  Google Scholar 

  16. Riordan MM, Weiss EP, Meyer TE, Ehsani AA, Racette SB, Villareal DT et al (2008) The effects of caloric restriction-and exercise-induced weight loss on left ventricular diastolic function. Am J Physiol Heart Circ Physiol 294:H1174–H1182

    Article  CAS  PubMed  Google Scholar 

  17. Holloszy JO, Fontana L (2007) Caloric restriction in humans. Exp Gerontol 42:709–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    Article  CAS  PubMed  Google Scholar 

  19. Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE et al (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100:1659–1666

    Article  CAS  PubMed  Google Scholar 

  20. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB et al (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104:14855–14860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G et al (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mattson MP, Wan R (2005) Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem 16:129–137

    Article  CAS  PubMed  Google Scholar 

  23. Mager DE, Wan R, Brown M, Cheng A, Wareski P, Abernethy DR et al (2006) Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J 20:631–637

    Article  CAS  PubMed  Google Scholar 

  24. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J et al (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295:1539–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Csiszar A, Labinskyy N, Jimenez R, Pinto JT, Ballabh P, Losonczy G et al (2009) Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev 130:518–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101:6659–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV et al (2008) Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci U S A 105:2325–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Varady KA, Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Haus JM et al (2013) Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J 12:146

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taffet GE, Pham TT, Hartley CJ (1997) The age-associated alterations in late diastolic function in mice are improved by caloric restriction. J Gerontol A Biol Sci Med Sci 52:B285–B290

    Article  CAS  PubMed  Google Scholar 

  30. Shinmura K, Tamaki K, Sano M, Murata M, Yamakawa H, Ishida H et al (2011) Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol 50:117–127

    Article  CAS  PubMed  Google Scholar 

  31. Dhahbi JM, Tsuchiya T, Kim HJ, Mote PL, Spindler SR (2006) Gene expression and physiologic responses of the heart to the initiation and withdrawal of caloric restriction. J Gerontol A Biol Sci Med Sci 61:218–231

    Article  PubMed  Google Scholar 

  32. Seymour EM, Parikh RV, Singer AA, Bolling SF (2006) Moderate calorie restriction improves cardiac remodeling and diastolic dysfunction in the Dahl-SS rat. J Mol Cell Cardiol 41:661–668

    Article  CAS  PubMed  Google Scholar 

  33. Ahmet I, Tae HJ, de Cabo R, Lakatta EG, Talan MI (2011) Effects of calorie restriction on cardioprotection and cardiovascular health. J Mol Cell Cardiol 51:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan L, Gao S, Ho D, Park M, Ge H, Wang C et al (2013) Calorie restriction can reverse, as well as prevent, aging cardiomyopathy. Age (Dordr) 35:2177–2182

    Article  Google Scholar 

  35. Dai DF, Karunadharma PP, Chiao YA, Basisty N, Crispin D, Hsieh EJ et al (2014) Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13:529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castello L, Froio T, Maina M, Cavallini G, Biasi F, Leonarduzzi G et al (2010) Alternate-day fasting protects the rat heart against age-induced inflammation and fibrosis by inhibiting oxidative damage and NF-kB activation. Free Radic Biol Med 48:47–54

    Article  CAS  PubMed  Google Scholar 

  37. Castello L, Maina M, Testa G, Cavallini G, Biasi F, Donati A et al (2011) Alternate-day fasting reverses the age-associated hypertrophy phenotype in rat heart by influencing the ERK and PI3K signaling pathways. Mech Ageing Dev 132:305–314

    Article  CAS  PubMed  Google Scholar 

  38. Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan MI (2010) Chronic alternate-day fasting results in reduced diastolic compliance and diminished systolic reserve in rats. J Card Fail 16:843–853

    Article  PubMed  PubMed Central  Google Scholar 

  39. Meyer TE, Kovács SJ, Ehsani AA, Klein S, Holloszy JO, Fontana L (2006) Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 47:398–402

    Article  CAS  PubMed  Google Scholar 

  40. Abete P, Testa G, Ferrara N, De Santis D, Capaccio P, Viati L et al (2002) Cardioprotective effect of ischemic preconditioning is preserved in food-restricted senescent rats. Am J Physiol Heart Circ Physiol 282:H1978–H1987

    Article  CAS  PubMed  Google Scholar 

  41. Broderick TL, Driedzic WR, Gillis M, Jacob J, Belke T (2001) Effects of chronic food restriction and exercise training on the recovery of cardiac function following ischemia. J Gerontol A Biol Sci Med Sci 56:B33–B37

    Article  CAS  PubMed  Google Scholar 

  42. Chandrasekar B, Nelson JF, Colston JT, Freeman GL (2001) Calorie restriction attenuates inflammatory responses to myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 280:H2094–H2102

    Article  CAS  PubMed  Google Scholar 

  43. Edwards AG, Donato AJ, Lesniewski LA, Gioscia RA, Seals DR, Moore RL (2010) Life-long caloric restriction elicits pronounced protection of the aged myocardium: a role for AMPK. Mech Ageing Dev 131:739–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Long P, Nguyen Q, Thurow C, Broderick TL (2002) Caloric restriction restores the cardioprotective effect of preconditioning in the rat heart. Mech Ageing Dev 123:1411–1413

    Article  PubMed  Google Scholar 

  45. Peart JN, See Hoe L, Pepe S, Johnson P, Headrick JP (2012) Opposing effects of age and calorie restriction on molecular determinants of myocardial ischemic tolerance. Rejuvenation Res 15:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shinmura K, Tamaki K, Bolli R (2005) Short-term caloric restriction improves ischemic tolerance independent of opening of ATP-sensitive K+ channels in both young and aged hearts. J Mol Cell Cardiol 39:285–296

    Article  CAS  PubMed  Google Scholar 

  47. Shinmura K, Tamaki K, Bolli R (2008) Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 295:H2348–H2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R (2007) Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 116:2809–2817

    Article  CAS  PubMed  Google Scholar 

  49. Sung MM, Soltys CL, Masson G, Boisvenue JJ, Dyck JR (2011) Improved cardiac metabolism and activation of the RISK pathway contributes to improved post-ischemic recovery in calorie restricted mice. J Mol Med (Berl) 89:291–302

    Article  CAS  Google Scholar 

  50. Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan M (2005) Cardioprotection by intermittent fasting in rats. Circulation 112:3115–3121

    Article  PubMed  Google Scholar 

  51. Katare RG, Kakinuma Y, Arikawa M, Yamasaki F, Sato T (2009) Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway. J Mol Cell Cardiol 46:405–412

    Article  CAS  PubMed  Google Scholar 

  52. Sloan C, Tuinei J, Nemetz K, Frandsen J, Soto J, Wride N et al (2011) Central leptin signaling is required to normalize myocardial fatty acid oxidation rates in caloric-restricted ob/ob mice. Diabetes 60:1424–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. AlGhatrif M, Watts VL, Niu X, Halushka M, Miller KL, Vandegaer K et al (2013) Beneficial cardiac effects of caloric restriction are lost with age in a murine model of obesity. J Cardiovasc Transl Res 6:436–445

    Article  PubMed  Google Scholar 

  54. van der Meer RW, Rijzewijk LJ, Diamant M, Hammer S, Schär M, Bax JJ et al (2008) The ageing male heart: myocardial triglyceride content as independent predictor of diastolic function. Eur Heart J 29:1516–1522

    Article  PubMed  Google Scholar 

  55. Stein PK, Soare A, Meyer TE, Cangemi R, Holloszy JO, Fontana L (2012) Caloric restriction may reverse age-related autonomic decline in humans. Aging Cell 11:644–650

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Vafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abiri, B., Vafa, M. (2019). Dietary Restriction, Cardiovascular Aging and Age-Related Cardiovascular Diseases: A Review of the Evidence. In: Guest, P. (eds) Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology(), vol 1178. Springer, Cham. https://doi.org/10.1007/978-3-030-25650-0_7

Download citation

Publish with us

Policies and ethics