Skip to main content

Coenzyme Q10 Supplementation in Fibrosis and Aging

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Aging and Anti-Aging Research

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1178))

Abstract

Coenzyme Q10 (CoQ10) is a vitamin-like substance which functions as an electron carrier within the mitochondrial respiratory chain, as well as serving as an important intracellular antioxidant. Most of the body’s CoQ10 requirements are met by endogenous synthesis, although the capacity for CoQ10 production decreases substantially with increasing age. In this article we have reviewed the potential role of CoQ10 supplementation in the treatment of tissue fibrosis, which has been implicated in the age-related loss of function of various organs including the heart. Clinical studies have indicated that CoQ10 supplementation may decrease the level of cardiovascular fibrosis to which older individuals are subjected, and thereby improve cardiovascular function and reduce the risk of cardiovascular associated mortality. Although the factors responsible for the anti-fibrotic action of CoQ10 have yet to be fully elucidated, its antioxidant and anti-inflammatory functions are thought to be major contributors to its clinical efficacy in the treatment of this age-related disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hargreaves IP (2003) Ubiquinone: cholesterol’s reclusive cousin. Ann Clin Biochem 40(Pt3):207–218

    Article  CAS  PubMed  Google Scholar 

  2. Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20(6):591–598

    Article  CAS  PubMed  Google Scholar 

  3. Fan L, Feng Y, Chen GC, Qin LQ, Fu CL, Chen LH (2003) Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 119:128–136

    Article  Google Scholar 

  4. Xia L, Nordman T, Olsson JM, Damdimopoulos A, Björkhem-Bergman L, Nalvarte I et al (2003) The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 278(4):2141–2146

    Article  CAS  PubMed  Google Scholar 

  5. Mantle D (2015) Coenzyme Q10 and cardiovascular disease: an overview. Br J Cardiol 22(4):1–7

    Google Scholar 

  6. Navas P, Villalba JM, de Cabo R (2007) The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion 7(Suppl):S34–S40

    Article  CAS  PubMed  Google Scholar 

  7. Gutierrez-Marisca FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J (2018) Coenzyme Q10: from bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 16(1):1–18

    Google Scholar 

  8. Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Döring F (2008) Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 32(1–4):179–183

    Article  CAS  PubMed  Google Scholar 

  9. Yubero-Serrano EM, Gonzalez-Guardia L, Rangel-Zuñiga O, Delgado-Lista J, Gutierrez-Mariscal FM, Perez-Martinez P et al (2012) Mediterranean diet supplemented with coenzyme Q10 modifies the expression of proinflammatory and endoplasmic reticulum stress-related genes in elderly men and women. J Gerontol A Biol Sci Med Sci 67(1):3–10

    Article  PubMed  Google Scholar 

  10. Weber C, Bysted A, Hłlmer G (1997) The coenzyme Q10 content of the average Danish diet. Int J Vitam Nutr Res 67(2):123–129

    CAS  PubMed  Google Scholar 

  11. Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L (2014) Genetics of coenzyme q10 deficiency. Mol Syndromol 5(3–4):156–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Awad AM, Bradley MC, Fernández-Del-Río L, Nag A, Tsui HS, Clarke CF (2018) Coenzyme Q10 deficiencies: pathways in yeast and humans. Essays Biochem 62(3):361–376

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yubero D, Montero R, Santos-Ocaña C, Salviati L, Navas P, Artuch R et al (2018) Molecular diagnosis of coenzyme Q10 deficiency: an update. Expert Rev Mol Diagn 18(6):491–498

    Article  CAS  PubMed  Google Scholar 

  14. Ogasahara S, Engel AG, Frens D, Mack D (1989) Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A 86(7):2379–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emmanuele V, López LC, Berardo A, Naini A, Tadesse S, Wen B et al (2012) Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 69(8):978–983

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yubero D, Montero R, Artuch R, Land JM, Heales SJ, Hargreaves IP (2014) Biochemical diagnosis of coenzyme Q10 deficiency. Mol Syndromol 5(3–4):147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neergheen V, Hargreaves IP (2018) Secondary coenzyme Q10 deficiency: causes and consequence. In: Grigoryeva S (ed) Coenzyme Q10- uses, health effects and role in disease. Nova Science Publishers, New York, pp 89–111. ISBN-10: 1536132845

    Google Scholar 

  18. Duberley KE, Hargreaves IP, Chaiwatanasirikul KA, Heales SJ, Land JM, Rahman S et al (2013) Coenzyme Q10 quantification in muscle, fibroblasts and cerebrospinal fluid by liquid chromatography/tandem mass spectrometry using a novel deuterated internal standard. Rapid Commun Mass Spectrom 27(9):924–930

    Article  CAS  PubMed  Google Scholar 

  19. Yubero D, Montero R, Ramos M, Neergheen V, Navas P, Artuch R et al (2015) Determination of urinary coenzyme Q10 by HPLC with electrochemical detection: reference values for a paediatric population. Biofactors 41(6):424–430

    Article  CAS  PubMed  Google Scholar 

  20. Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK et al (2017) The processes and mechanisms of cardiac and pulmonary fibrosis. Front Physiol 8:777. https://doi.org/10.3389/fphys.2017.00777

    Article  PubMed  PubMed Central  Google Scholar 

  21. Biernacka A, Frangogiannis NG (2011) Aging and cardiac fibrosis. Aging Dis 2(2):158–173

    PubMed  PubMed Central  Google Scholar 

  22. Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y et al (2017) AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev 38:18–27

    Article  CAS  PubMed  Google Scholar 

  23. Nanthakumar CB, Hatley RJ, Lemma S, Gauldie J, Marshall RP, Macdonald SJ (2015) Dissecting fibrosis: therapeutic insights from the small molecule toolbox. Nat Rev Drug Discov 14(10):693–720

    Article  CAS  PubMed  Google Scholar 

  24. Choi HK, Pokharel YR, Lim SC, Han HK, Ryu CS, Kim SK et al (2009) Inhibition of liver fibrosis by solubilized coenzyme Q10: role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression. Toxicol Appl Pharmacol 240(3):377–384

    Article  CAS  PubMed  Google Scholar 

  25. Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, Neergheen V, Aiken CE, Martin-Gronert MS et al (2016) Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr 103(2):579–588

    Article  CAS  PubMed  Google Scholar 

  26. Chen PY, Hou CW, Shibu MA, Day CH, Pai P, Liu ZR et al (2017) Protective effect of Co-enzyme Q10 On doxorubicin-induced cardiomyopathy of rat hearts. Environ Toxicol 32(2):679–689

    Article  CAS  PubMed  Google Scholar 

  27. Ulla A, Mohamed MK, Sikder B, Rahman AT, Sumi FA, Hossain M et al (2017) Coenzyme Q10 prevents oxidative stress and fibrosis in isoprenaline induced cardiac remodeling in aged rats. BMC Pharmacol Toxicol 18(1):1–12

    Article  Google Scholar 

  28. Xue R, Wang J, Yang L, Liu X, Gao Y, Pang Y et al (2019) Coenzyme Q10 ameliorates pancreatic fibrosis via the ROS triggered mTOR signalling pathway. Oxidative Med Cell Longev 2019:8039694. https://doi.org/10.1155/2019/8039694

    Article  Google Scholar 

  29. Mohamed D, Khairy E, Tawfek SS, Habib EK, Fetouh MA (2019) CoQ10 attenuates lung and liver fibrosis via modulation of autophagy in methotrexate treated rat. Biomed Pharmacother 109:892–901

    Article  CAS  PubMed  Google Scholar 

  30. Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R (2001) Age related changes in collagen network of the human heart. Mech Ageing Dev 122(10):1049–1058

    Article  CAS  PubMed  Google Scholar 

  31. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE (2011) Left ventricular remodelling in heart failure: current concepts in clinical significance and assessment. JACC Cardivasc Imaging 4(1):98–108

    Article  Google Scholar 

  32. Alehagen U, Johansson P, Björnstedt M, Rosén A, Dahlström U (2013) Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: a 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int J Cardiol 167(5):1860–1866

    Article  PubMed  Google Scholar 

  33. Alehagen U, Aaseth J, Alexander J, Svensson E, Johansson P, Larsson A (2018) Less fibrosis in elderly subjects supplemented with selenium and CoQ10- a mechanism behind reduced cardiovascular mortality. Biofactors 44(2):137–147

    Article  CAS  PubMed  Google Scholar 

  34. Hidaka T, Fujii K, Funahashi I, Fukutomi N, Hosoe K (2008) Safety assessment of coenzyme Q10 (CoQ10). Biofactors 32(1–4):199–208

    Article  CAS  PubMed  Google Scholar 

  35. Hosoe K, Kitano M, Kishida H, Kubo H, Fujii K, Kitahara M (2007) Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol 47(1):19–28

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi N, Nakamura K, Oguma Y, Fujiwara S, Takabe M, Sono A et al (2009) Genotoxicity studies of ubidecarenone (coenzyme Q10) manufactured by bacteria fermentation. J Toxicol Sci 34(4):389–397

    Article  CAS  PubMed  Google Scholar 

  37. Mantle D, Hargreaves I (2019) Coenzyme Q10 and degenerative disorders affecting longevity: an overview. Antioxidants (Basel) 8(2). pii: E44. https://doi.org/10.3390/antiox8020044

    Article  CAS  PubMed Central  Google Scholar 

  38. Stepien K, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D (2017) Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J Clin Med 6(7). pii: E71. https://doi.org/10.3390/jcm6070071

    Article  PubMed Central  Google Scholar 

  39. Hecker L (2018) Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging population. Am J Phys Lung Cell Mol Phys 314(4):L642–L653

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain P. Hargreaves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hargreaves, I.P., Mantle, D. (2019). Coenzyme Q10 Supplementation in Fibrosis and Aging. In: Guest, P. (eds) Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology(), vol 1178. Springer, Cham. https://doi.org/10.1007/978-3-030-25650-0_6

Download citation

Publish with us

Policies and ethics