Skip to main content

The Cytoskeleton as a Modulator of Aging and Neurodegeneration

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Aging and Anti-Aging Research

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1178))

Abstract

The cytoskeleton consists of filamentous protein polymers that form organized structures, contributing to a multitude of cell life aspects. It includes three types of polymers: the actin microfilaments, the microtubules and the intermediate filaments. Decades of research have implicated the cytoskeleton in processes that regulate cellular and organismal aging, as well as neurodegeneration associated with injury or neurodegenerative disease, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, or Charcot Marie Tooth disease. Here, we provide a brief overview of cytoskeletal structure and function, and discuss experimental evidence linking cytoskeletal function and dynamics with aging and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eira J, Silva CS, Sousa MM, Liz MA (2016) The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol 141:61–82

    Article  CAS  PubMed  Google Scholar 

  3. Spillane M, Ketschek A, Jones SL, Korobova F, Marsick B, Lanier L et al (2011) The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia. Dev Neurobiol 71(9):747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Watanabe K, Al-Bassam S, Miyazaki Y, Wandless TJ, Webster P, Arnold DB (2012) Networks of polarized actin filaments in the axon initial segment provide a mechanism for sorting axonal and dendritic proteins. Cell Rep 2(6):1546–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118):452–456

    Article  CAS  PubMed  Google Scholar 

  6. Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158(1):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gomez TM, Letourneau PC (2014) Actin dynamics in growth cone motility and navigation. J Neurobiol 129(2):221–234

    CAS  Google Scholar 

  8. Marsh L, Letourneau PC (1984) Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J Cell Biol 99(6):2041–2047

    Article  CAS  PubMed  Google Scholar 

  9. Gallo G (2011) The cytoskeletal and signaling mechanisms of axon collateral branching. Dev Neurobiol 71(3):201–220

    Article  PubMed  Google Scholar 

  10. Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9(5):344–356

    Article  CAS  PubMed  Google Scholar 

  11. Cohen RS, Chung SK, Pfaff DW (1985) Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol 5(3):271–284

    Article  CAS  PubMed  Google Scholar 

  12. Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci U S A 79(23):7590–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korobova F, Svitkina T (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 21(1):165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirsch J, Betz H (1995) The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J Neurosci 15(6):4148–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seixas AI, Azevedo MM, de Faria JP, Fernandes D, Mendes Pinto I, Relvas JB (2019) Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell Mol Life Sci 76(1):1–11

    Article  CAS  PubMed  Google Scholar 

  16. Fox MA, Afshari FS, Alexander JK, Colello RJ, Fuss B (2006) Growth conelike sensorimotor structures are characteristic features of postmigratory, premyelinating oligodendrocytes. Glia 53(5):563–566

    Article  PubMed  Google Scholar 

  17. Song J, Goetz BD, Baas PW, Duncan ID (2001) Cytoskeletal reorganization during the formation of oligodendrocyte processes and branches. Mol Cell Neurosci 17(4):624–636

    Article  CAS  PubMed  Google Scholar 

  18. Azevedo MM, Domingues HS, Cordelieres FP, Sampaio P, Seixas AI, Relvas JB (2018) Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics. Glia 66(9):1826–1844

    Article  PubMed  Google Scholar 

  19. Nawaz S, Sanchez P, Schmitt S, Snaidero N, Mitkovski M, Velte C et al (2015) Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell 34(2):139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuchero JB, Fu MM, Sloan SA, Ibrahim A, Olson A, Zaremba A et al (2015) CNS myelin wrapping is driven by actin disassembly. Dev Cell 34(2):152–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Penazzi L, Bakota L, Brandt R (2016) Microtubule dynamics in neuronal development, plasticity, and neurodegeneration. Int Rev Cell Mol Biol 321:89–169

    Article  CAS  PubMed  Google Scholar 

  22. Schatten H, Sun QY (2018) Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 150(4):303–325

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen MM, Stone MC, Rolls MM (2011) Microtubules are organized independently of the centrosome in Drosophila neurons. Neural Dev 6:38. https://doi.org/10.1186/1749-8104-6-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stiess M, Maghelli N, Kapitein LC, Gomis-Ruth S, Wilsch-Brauninger M, Hoogenraad CC et al (2010) Axon extension occurs independently of centrosomal microtubule nucleation. Science 327(5966):704–707

    Article  CAS  PubMed  Google Scholar 

  25. Challacombe JF, Snow DM, Letourneau PC (1997) Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue. J Neurosci 17(9):3085–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dent EW, Callaway JL, Szebenyi G, Baas PW, Kalil K (1999) Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J Neurosci 19(20):8894–8908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10(5):319–332

    Article  CAS  PubMed  Google Scholar 

  28. Herrmann H, Aebi U (2016) Intermediate filaments: structure and assembly. Cold Spring Harb Perspect Biol 8(11):pii: a018242. https://doi.org/10.1101/cshperspect.a018242

    Article  CAS  Google Scholar 

  29. Perrot R, Berges R, Bocquet A, Eyer J (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38(1):27–65

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Q, Couillard-Despres S, Julien JP (2013) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 148(1):299–316

    Article  Google Scholar 

  31. Higuchi R, Vevea JD, Swayne TC, Chojnowski R, Hill V, Boldogh IR et al (2013) Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr Biol 23(23):2417–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Higuchi-Sanabria R, Vevea JD, Charalel JK, Sapar ML, Pon LA (2016) The transcriptional repressor Sum1p counteracts Sir2p in regulation of the actin cytoskeleton, mitochondrial quality control and replicative lifespan in Saccharomyces cerevisiae. Microb Cell 3(2):79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baird NA, Douglas PM, Simic MS, Grant AR, Moresco JJ, Wolff SC et al (2014) HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span. Science 346(6207):360–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Higuchi-Sanabria R, Paul Rd JW, Durieux J, Benitez C, Frankino PA, Tronnes SU et al (2018) Spatial regulation of the actin cytoskeleton by HSF-1 during aging. Mol Biol Cell 29(21):2522–2527

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang ZB, Schatten H, Sun QY (2011) Why is chromosome segregation error in oocytes increased with maternal aging? Physiology (Bethesda) 26(5):314–325

    CAS  Google Scholar 

  36. Cheng J, Turkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456(7222):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z et al (2017) Aging of cerebral white matter. Ageing Res Rev 34:64–76

    Article  CAS  PubMed  Google Scholar 

  38. Stahon KE, Bastian C, Griffith S, Kidd GJ, Brunet S, Baltan S (2016) Age-related changes in axonal and mitochondrial ultrastructure and function in white matter. J Neurosci 36(39):9990–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peters A, Kemper T (2012) A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiol Aging 33(10):2357–2372

    Article  PubMed  Google Scholar 

  40. Patzig J, Erwig MS, Tenzer S, Kusch K, Dibaj P, Mobius W et al (2016) Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. Elife 5:pii: e17119. https://doi.org/10.7554/eLife.17119

    Article  Google Scholar 

  41. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D et al (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hill RA, Li AM, Grutzendler J (2018) Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat Neurosci 21(5):683–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE (2018) Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 21(5):696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nicholson CJ, Singh K, Saphirstein RJ, Gao YZ, Li Q, Chiu JG et al (2018) Reversal of aging-induced increases in aortic stiffness by targeting cytoskeletal protein-protein interfaces. J Am Heart Assoc 7(15):pii: e008926. https://doi.org/10.1161/JAHA.118.008926

    Article  Google Scholar 

  45. Biernacka A, Frangogiannis NG (2011) Aging and cardiac fibrosis. Aging Dis 2(2):158–173

    PubMed  PubMed Central  Google Scholar 

  46. Thompson BR, Metzger JM (2014) Cell biology of sarcomeric protein engineering: disease modeling and therapeutic potential. Anat Rec (Hoboken) 297(9):1663–1669

    Article  CAS  Google Scholar 

  47. Kaushik G, Spenlehauer A, Sessions AO, Trujillo AS, Fuhrmann A, Fu Z et al (2015) Vinculin network-mediated cytoskeletal remodeling regulates contractile function in the aging heart. Sci Transl Med 7(292):292ra99. https://doi.org/10.1126/scitranslmed.aaa5843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang X, Khaidakov M, Ding Z, Dai Y, Mercanti F, Mehta JL (2013) LOX-1 in the maintenance of cytoskeleton and proliferation in senescent cardiac fibroblasts. J Mol Cell Cardiol 60:184–190

    Article  CAS  PubMed  Google Scholar 

  49. Chang HY, Sang TK, Chiang AS (2018) Untangling the tauopathy for Alzheimer’s disease and parkinsonism. J Biomed Sci 25(1):54. https://doi.org/10.1186/s12929-018-0457-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210

    Article  CAS  PubMed  Google Scholar 

  52. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  53. Williams DR (2006) Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern Med J 36(10):652–660

    Article  CAS  PubMed  Google Scholar 

  54. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8(2):393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526

    Article  CAS  PubMed  Google Scholar 

  56. Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15(3):4671–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jho YS, Zhulina EB, Kim MW, Pincus PA (2010) Monte carlo simulations of tau proteins: effect of phosphorylation. Biophys J 99(8):2387–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fischer D, Mukrasch MD, Biernat J, Bibow S, Blackledge M, Griesinger C et al (2009) Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules. Biochemistry 48(42):10047–10055

    Article  CAS  PubMed  Google Scholar 

  59. Brandt R, Leger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 131(5):1327–1340

    Article  CAS  PubMed  Google Scholar 

  60. Elie A, Prezel E, Guerin C, Denarier E, Ramirez-Rios S, Serre L et al (2015) Tau co-organizes dynamic microtubule and actin networks. Sci Rep 5:9964. https://doi.org/10.1038/srep09964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85(11):4051–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R et al (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85(12):4506–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85(13):4884–4888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Berriman J, Serpell LC, Oberg KA, Fink AL, Goedert M, Crowther RA (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci U S A 100(15):9034–9038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arendt T, Bullmann T (2013) Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a “master switch” regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol 305(5):R478–R489

    Article  CAS  PubMed  Google Scholar 

  66. Su B, Wang X, Drew KL, Perry G, Smith MA, Zhu X (2008) Physiological regulation of tau phosphorylation during hibernation. J Neurochem 105(6):2098–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brandt R (2001) Cytoskeletal mechanisms of neuronal degeneration. Cell Tissue Res 305(2):255–265

    Article  CAS  PubMed  Google Scholar 

  68. Dawson HN, Cantillana V, Jansen M, Wang H, Vitek MP, Wilcock DM et al (2010) Loss of tau elicits axonal degeneration in a mouse model of Alzheimer’s disease. Neuroscience 169(1):516–531

    Article  CAS  PubMed  Google Scholar 

  69. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK et al (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18(2):291–295

    Article  CAS  PubMed  Google Scholar 

  70. Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS et al (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32(11):3601–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barten DM, Fanara P, Andorfer C, Hoque N, Wong PY, Husted KH et al (2012) Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027. J Neurosci 32(21):7137–7145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Graham WV, Bonito-Oliva A, Sakmar TP (2017) Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med 68:413–430

    Article  CAS  PubMed  Google Scholar 

  73. Li XC, Hu Y, Wang ZH, Luo Y, Zhang Y, Liu XP et al (2016) Human wild-type full-length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins. Sci Rep 6:24756. https://doi.org/10.1038/srep24756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hu Y, Li XC, Wang ZH, Luo Y, Zhang X, Liu XP et al (2016) Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin. Oncotarget 7(14):17356–17368

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rao MV, McBrayer MK, Campbell J, Kumar A, Hashim A, Sershen H et al (2014) Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice. J Neurosci 34(28):9222–9234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Afreen S, Riherd Methner DN, Ferreira A (2017) Tau45-230 association with the cytoskeleton and membrane-bound organelles: functional implications in neurodegeneration. Neuroscience 362:104–117

    Article  CAS  PubMed  Google Scholar 

  77. Ozcelik S, Sprenger F, Skachokova Z, Fraser G, Abramowski D, Clavaguera F et al (2016) Co-expression of truncated and full-length tau induces severe neurotoxicity. Mol Psychiatry 21(12):1790–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M et al (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293(5530):711–714

    Article  CAS  PubMed  Google Scholar 

  79. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT et al (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9(2):139–148

    Article  CAS  PubMed  Google Scholar 

  81. Maass A, Lockhart SN, Harrison TM, Bell RK, Mellinger T, Swinnerton K et al (2018) Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. J Neurosci 38(3):530–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S et al (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27(13):3571–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. d’Ydewalle C, Krishnan J, Chiheb DM, Van Damme P, Irobi J, Kozikowski AP et al (2011) HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 17(8):968–974

    Article  CAS  PubMed  Google Scholar 

  84. Cartelli D, Ronchi C, Maggioni MG, Rodighiero S, Giavini E, Cappelletti G (2010) Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP+ -induced neurodegeneration. J Neurochem 115(1):247–258

    Article  CAS  PubMed  Google Scholar 

  85. Kikuchi H, Doh-ura K, Kawashima T, Kira J, Iwaki T (1999) Immunohistochemical analysis of spinal cord lesions in amyotrophic lateral sclerosis using microtubule-associated protein 2 (MAP2) antibodies. Acta Neuropathol 97(1):13–21

    Article  CAS  PubMed  Google Scholar 

  86. Farah CA, Nguyen MD, Julien JP, Leclerc N (2003) Altered levels and distribution of microtubule-associated proteins before disease onset in a mouse model of amyotrophic lateral sclerosis. J Neurochem 84(1):77–86

    Article  CAS  PubMed  Google Scholar 

  87. Fanara P, Banerjee J, Hueck RV, Harper MR, Awada M, Turner H et al (2007) Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis. J Biol Chem 282(32):23465–23472

    Article  CAS  PubMed  Google Scholar 

  88. Hensel N, Claus P (2018) The actin cytoskeleton in SMA and ALS: how does it contribute to motoneuron degeneration? Neuroscientist 24(1):54–72

    Article  CAS  PubMed  Google Scholar 

  89. Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23

    Article  CAS  PubMed  Google Scholar 

  90. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165

    Article  CAS  PubMed  Google Scholar 

  91. Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS et al (2002) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29(2):166–173

    Article  CAS  Google Scholar 

  92. Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M et al (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29(2):160–165

    Article  CAS  PubMed  Google Scholar 

  93. Sharma A, Lambrechts A, Hao le T, Le TT, Sewry CA, Ampe C et al (2005) A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells. Exp Cell Res 309(1):185–197

    Article  CAS  PubMed  Google Scholar 

  94. van Bergeijk J, Rydel-Konecke K, Grothe C, Claus P (2007) The spinal muscular atrophy gene product regulates neurite outgrowth: importance of the C terminus. FASEB J 21(7):1492–1502

    Article  CAS  PubMed  Google Scholar 

  95. Oprea GE, Krober S, McWhorter ML, Rossoll W, Muller S, Krawczak M et al (2008) Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320(5875):524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nolle A, Zeug A, van Bergeijk J, Tonges L, Gerhard R, Brinkmann H et al (2011) The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin. Hum Mol Genet 20(24):4865–4878

    Article  CAS  PubMed  Google Scholar 

  97. Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K et al (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488(7412):499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giesemann T, Rathke-Hartlieb S, Rothkegel M, Bartsch JW, Buchmeier S, Jockusch BM et al (1999) A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with smn in nuclear gems. J Biol Chem 274(53):37908–37914

    Article  CAS  PubMed  Google Scholar 

  99. Jockusch BM, Murk K, Rothkegel M (2007) The profile of profilins. Rev Physiol Biochem Pharmacol 159:131–149

    Article  CAS  PubMed  Google Scholar 

  100. Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, Dotti CG (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162(7):1267–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shao J, Welch WJ, Diprospero NA, Diamond MI (2008) Phosphorylation of profilin by ROCK1 regulates polyglutamine aggregation. Mol Cell Biol 28(17):5196–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith BN, Vance C, Scotter EL, Troakes C, Wong CH, Topp S et al (2015) Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiol Aging 36(3):1602.e17–1602.e27. https://doi.org/10.1016/j.neurobiolaging.2014.10.032

    Article  CAS  Google Scholar 

  103. Tanaka Y, Hasegawa M (2016) Profilin 1 mutants form aggregates that induce accumulation of prion-like TDP-43. Prion 10(4):283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Figley MD, Bieri G, Kolaitis RM, Taylor JP, Gitler AD (2014) Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics. J Neurosci 34(24):8083–8097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fil D, DeLoach A, Yadav S, Alkam D, MacNicol M, Singh A et al (2017) Mutant profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum Mol Genet 26(4):686–701

    CAS  PubMed  Google Scholar 

  106. Yang C, Danielson EW, Qiao T, Metterville J, Brown RH Jr, Landers JE et al (2016) Mutant PFN1 causes ALS phenotypes and progressive motor neuron degeneration in mice by a gain of toxicity. Proc Natl Acad Sci U S A 113(41):E6209–E6218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Baglietto-Vargas D, Prieto GA, Limon A, Forner S, Rodriguez-Ortiz CJ, Ikemura K et al (2018) Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer’s disease. Aging Cell 6:e12791. https://doi.org/10.1111/acel.12791

    Article  CAS  Google Scholar 

  108. Fang Y, Wang J, Yao L, Li C, Wang J, Liu Y et al (2018) The adhesion and migration of microglia to beta-amyloid (Abeta) is decreased with aging and inhibited by Nogo/NgR pathway. J Neuroinflammation 15(1):210. https://doi.org/10.1186/s12974-018-1250-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Teng T, Dong L, Ridgley DM, Ghura S, Tobin MK, Sun GY et al (2019) Cytosolic phospholipase A2 facilitates oligomeric amyloid-beta peptide association with microglia via regulation of membrane-cytoskeleton connectivity. Mol Neurobiol 56(5):3222–3234. https://doi.org/10.1007/s12035-018-1304-5

    Article  CAS  PubMed  Google Scholar 

  110. Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C et al (2014) GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein. Cell Death Differ 21(12):1971–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Delague V, Jacquier A, Hamadouche T, Poitelon Y, Baudot C, Boccaccio I et al (2007) Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet 81(1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stendel C, Roos A, Deconinck T, Pereira J, Castagner F, Niemann A et al (2007) Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet 81(1):158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xu Z, Cork LC, Griffin JW, Cleveland DW (1993) Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73(1):23–33

    Article  CAS  PubMed  Google Scholar 

  114. Wong PC, Marszalek J, Crawford TO, Xu Z, Hsieh ST, Griffin JW et al (1995) Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons. J Cell Biol 130(6):1413–1422

    Article  CAS  PubMed  Google Scholar 

  115. Cote F, Collard JF, Julien JP (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73(1):35–46

    Article  CAS  PubMed  Google Scholar 

  116. Ksiezak-Reding H, Dickson DW, Davies P, Yen SH (1987) Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles. Proc Natl Acad Sci U S A 84(10):3410–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Selkoe DJ, Ihara Y, Salazar FJ (1982) Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science 215(4537):1243–1245

    Article  CAS  PubMed  Google Scholar 

  118. Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507(1):81–87

    Article  CAS  PubMed  Google Scholar 

  119. Goldman JE, Yen SH, Chiu FC, Peress NS (1983) Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 221(4615):1082–1084

    Article  CAS  PubMed  Google Scholar 

  120. Galloway PG, Mulvihill P, Perry G (1992) Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol 140(4):809–822

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Forno LS, Sternberger LA, Sternberger NH, Strefling AM, Swanson K, Eng LF (1986) Reaction of Lewy bodies with antibodies to phosphorylated and non-phosphorylated neurofilaments. Neurosci Lett 64(3):253–258

    Article  CAS  PubMed  Google Scholar 

  122. Hill WD, Arai M, Cohen JA, Trojanowski JQ (1993) Neurofilament mRNA is reduced in Parkinson’s disease substantia nigra pars compacta neurons. J Comp Neurol 329(3):328–336

    Article  CAS  PubMed  Google Scholar 

  123. Mersiyanova IV, Perepelov AV, Polyakov AV, Sitnikov VF, Dadali EL, Oparin RB et al (2000) A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am J Hum Genet 67(1):37–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brownlees J, Ackerley S, Grierson AJ, Jacobsen NJ, Shea K, Anderton BH et al (2002) Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum Mol Genet 11(23):2837–2844

    Article  CAS  PubMed  Google Scholar 

  125. Perez-Olle R, Leung CL, Liem RK (2002) Effects of Charcot-Marie-Tooth-linked mutations of the neurofilament light subunit on intermediate filament formation. J Cell Sci 115(Pt 24):4937–4946

    Article  CAS  PubMed  Google Scholar 

  126. Jordanova A, De Jonghe P, Boerkoel CF, Takashima H, De Vriendt E, Ceuterick C et al (2003) Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain 126(Pt 3):590–597

    Article  CAS  PubMed  Google Scholar 

  127. Perez-Olle R, Lopez-Toledano MA, Goryunov D, Cabrera-Poch N, Stefanis L, Brown K et al (2005) Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem 93(4):861–874

    Article  CAS  PubMed  Google Scholar 

  128. Fabrizi GM, Cavallaro T, Angiari C, Cabrini I, Taioli F, Malerba G et al (2007) Charcot-Marie-Tooth disease type 2E, a disorder of the cytoskeleton. Brain 130(Pt 2):394–403

    Article  PubMed  Google Scholar 

  129. Yoshihara T, Yamamoto M, Hattori N, Misu K, Mori K, Koike H et al (2002) Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals. J Peripher Nerv Syst 7(4):221–224

    Article  CAS  PubMed  Google Scholar 

  130. Fabrizi GM, Cavallaro T, Angiari C, Bertolasi L, Cabrini I, Ferrarini M et al (2004) Giant axon and neurofilament accumulation in Charcot-Marie-Tooth disease type 2E. Neurology 62(8):1429–1431

    Article  CAS  PubMed  Google Scholar 

  131. Georgiou DM, Zidar J, Korosec M, Middleton LT, Kyriakides T, Christodoulou K (2002) A novel NF-L mutation Pro22Ser is associated with CMT2 in a large Slovenian family. Neurogenetics 4(2):93–96

    Article  CAS  PubMed  Google Scholar 

  132. Sasaki T, Gotow T, Shiozaki M, Sakaue F, Saito T, Julien JP et al (2006) Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot-Marie-Tooth disease mutants. Hum Mol Genet 15(6):943–952

    Article  CAS  PubMed  Google Scholar 

  133. Delisle MB, Carpenter S (1984) Neurofibrillary axonal swellings and amyotrophic lateral sclerosis. J Neurol Sci 63(2):241–250

    Article  CAS  PubMed  Google Scholar 

  134. Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43(5):461–470

    Article  CAS  PubMed  Google Scholar 

  135. Munoz DG, Greene C, Perl DP, Selkoe DJ (1988) Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol 47(1):9–18

    Article  CAS  PubMed  Google Scholar 

  136. Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A 93(7):3155–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Eyer J, Cleveland DW, Wong PC, Peterson AC (1998) Pathogenesis of two axonopathies does not require axonal neurofilaments. Nature 391(6667):584–587

    Article  CAS  PubMed  Google Scholar 

  138. Kong J, Xu Z (2000) Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis. Neurosci Lett 281(1):72–74

    Article  CAS  PubMed  Google Scholar 

  139. Couillard-Despres S, Zhu Q, Wong PC, Price DL, Cleveland DW, Julien JP (1998) Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc Natl Acad Sci U S A 95(16):9626–9630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Beaulieu JM, Julien JP (2003) Peripherin-mediated death of motor neurons rescued by overexpression of neurofilament NF-H proteins. J Neurochem 85(1):248–256

    Article  CAS  PubMed  Google Scholar 

  141. Williamson TL, Bruijn LI, Zhu Q, Anderson KL, Anderson SD, Julien JP et al (1988) Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci U S A 95(16):9631–9636

    Article  Google Scholar 

  142. Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E et al (2003) Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron 39(2):217–225

    Article  CAS  PubMed  Google Scholar 

  143. Erturk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27(34):9169–9180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hall GF, Lee VM, Kosik KS (1991) Microtubule destabilization and neurofilament phosphorylation precede dendritic sprouting after close axotomy of lamprey central neurons. Proc Natl Acad Sci U S A 88(11):5016–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cho Y, Cavalli V (2012) HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J 31(14):3063–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Goldstein ME, Weiss SR, Lazzarini RA, Shneidman PS, Lees JF, Schlaepfer WW (1988) mRNA levels of all three neurofilament proteins decline following nerve transection. Brain Res 427(3):287–291

    CAS  PubMed  Google Scholar 

  147. Oblinger MM, Lasek RJ (1988) Axotomy-induced alterations in the synthesis and transport of neurofilaments and microtubules in dorsal root ganglion cells. J Neurosci 8(5):1747–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mikucki SA, Oblinger MM (1991) Corticospinal neurons exhibit a novel pattern of cytoskeletal gene expression after injury. J Neurosci Res 30(1):213–225

    Article  CAS  PubMed  Google Scholar 

  149. Tetzlaff W, Alexander SW, Miller FD, Bisby MA (1991) Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 11(8):2528–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hoffman PN, Pollock SC, Striph GG (1993) Altered gene expression after optic nerve transection: reduced neurofilament expression as a general response to axonal injury. Exp Neurol 119(1):32–36

    Article  CAS  PubMed  Google Scholar 

  151. Hoffman PN, Lasek RJ (1980) Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Res 202(2):317–333

    Article  CAS  PubMed  Google Scholar 

  152. Hoffman PN, Thompson GW, Griffin JW, Price DL (1985) Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J Cell Biol 101(4):1332–1340

    Article  CAS  PubMed  Google Scholar 

  153. McKerracher L, Essagian C, Aguayo AJ (1993) Temporal changes in beta-tubulin and neurofilament mRNA levels after transection of adult rat retinal ganglion cell axons in the optic nerve. J Neurosci 13(6):2617–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jiang YQ, Pickett J, Oblinger MM (1994) Comparison of changes in beta-tubulin and NF gene expression in rat DRG neurons under regeneration-permissive and regeneration-prohibitive conditions. Brain Res 637(1–2):233–241

    Article  CAS  PubMed  Google Scholar 

  155. Park JY, Jang SY, Shin YK, Koh H, Suh DJ, Shinji T et al (2013) Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience 238:258–269

    Article  CAS  PubMed  Google Scholar 

  156. Tao J, Feng C, Rolls MM (2006) The microtubule-severing protein fidgetin acts after dendrite injury to promote their degeneration. J Cell Sci 129(17):3274–3281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to those colleagues, whose work could not be referenced owing to space limitations. Work in the authors’ laboratory is funded by grants from the European Research Council (ERC – GA695190 – MANNA, ERC – GA737599 – NeuronAgeScreen), the European Commission Framework Programmes, and the Greek Ministry of Education. Konstantinos Kounakis is supported by the Greek Foundation of Research and Innovation (ELIDEK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios Tavernarakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kounakis, K., Tavernarakis, N. (2019). The Cytoskeleton as a Modulator of Aging and Neurodegeneration. In: Guest, P. (eds) Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology(), vol 1178. Springer, Cham. https://doi.org/10.1007/978-3-030-25650-0_12

Download citation

Publish with us

Policies and ethics