Advertisement

Adult T-Cell Leukemia/Lymphoma

  • Luis Malpica Castillo
  • Christopher DittusEmail author
Chapter

Abstract

Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell neoplasm caused by the human T-cell leukemia virus type I (HTLV-1). High prevalence of HTLV-1 infection is found in southwestern Japan, the Caribbean Basin, Central and South America, and western Africa. South Florida, New York, and Massachusetts are the continental US regions with the highest concentration of Caribbean immigrants; therefore ATLL cases are commonly encountered there. ATLL has a poor long-term prognosis. High-dose zidovudine with interferon-α is an effective frontline option for indolent ATLL. Chemotherapy should be used in aggressive ATLL followed by allogeneic stem cell transplantation when feasible.

Keywords

T-cell neoplasm T-cell leukemia HTLV-1 Rare cancer T-cell lymphoma Aggressive lymphoma ATLL Hypercalcemia 

References

  1. 1.
    Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood [Internet]. 1977 [cited 2017 Oct 1];50(3):481–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/301762.
  2. 2.
    Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A [Internet]. 1980 [cited 2017 Oct 1];77(12):7415–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6261256.
  3. 3.
    Verdonck K, González E, Van Dooren S, Vandamme A-M, Vanham G, Gotuzzo E. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect Dis [Internet]. 2007 [cited 2015 Mar 9];7(4):266–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17376384.
  4. 4.
    Matsuoka M. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology [Internet]. BioMed Central; 2005 [cited 2017 Oct 1];2(1):27. Available from:  https://doi.org/10.1186/1742-4690-2-27.
  5. 5.
    Katsuya H, Ishitsuka K, Utsunomiya A, Hanada S, Eto T, Moriuchi Y, et al. Treatment and survival among 1594 patients with ATL. Blood [Internet]. American Society of Hematology; 2015 [cited 2017 Oct 1];126(24):2570–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26361794.
  6. 6.
    Ishida T, Hishizawa M, Kato K, Tanosaki R, Fukuda T, Taniguchi S, et al. Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia-lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood [Internet]. American Society of Hematology; 2012 [cited 2017 Oct 1];120(8):1734–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9446633.
  7. 7.
    Chihara D, Ito H, Matsuda T, Katanoda K, Shibata A, Taniguchi S, et al. Association between decreasing trend in the mortality of adult T-cell leukemia/lymphoma and allogeneic hematopoietic stem cell transplants in Japan: analysis of Japanese vital statistics and Japan Society for Hematopoietic Cell Transplantation (JSHCT). Blood Cancer J [Internet]. 2013 [cited 2017 Oct 1];3(11):e159. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24241399.
  8. 8.
    Ishitsuka K, Ikeda S, Utsunomiya A, Saburi Y, Uozumi K, Tsukasaki K, et al. Smouldering adult T-cell leukaemia/lymphoma: a follow-up study in Kyushu. Br J Haematol [Internet]. 2008 [cited 2017 Oct 1];143(3):442–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18759766.
  9. 9.
    Iwanaga M, Watanabe T, Yamaguchi K. Adult T-cell leukemia: a review of epidemiological evidence. Front Microbiol [Internet]. Frontiers Media SA; 2012 [cited 2017 Nov 13];3:322. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22973265.
  10. 10.
    Gonçalves DU, Proietti FA, Ribas JGR, Araújo MG, Pinheiro SR, Guedes AC, et al. Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin Microbiol Rev [Internet]. American Society for Microbiology (ASM); 2010 [cited 2017 Nov 13];23(3):577–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20610824.
  11. 11.
    Proietti FA, Carneiro-Proietti ABF, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-I infection and associated diseases. Oncogene [Internet]. 2005 [cited 2017 Nov 14];24(39):6058–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16155612.
  12. 12.
    Harrington WJ, Ucar A, Gill P, Snodgrass S, Sheremata W, Cabral L, et al. Clinical spectrum of HTLV-I in south Florida. J Acquir Immune Defic Syndr Hum Retrovirol [Internet]. 1995 [cited 2017 Nov 14];8(5):466–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7697443.
  13. 13.
    Harrington WJ, Miller GA, Kemper RR, Byrne GE, Whitcomb CC, Rabin M. HTLV-I-associated leukemia/lymphoma in south Florida. J Acquir Immune Defic Syndr [Internet]. 1991 [cited 2017 Nov 14];4(3):284–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1992105.
  14. 14.
    Moskowitz AJ, Lunning MA, Horwitz SM. Should patients with aggressive peripheral T-cell lymphoma all be treated the same?: no… well yes, …but maybe not for long. Cancer J [Internet]. NIH Public Access; 2012 [cited 2017 Nov 14];18(5):445–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23006950.
  15. 15.
    Biggar RJ, Ng J, Kim N, Hisada M, Li H, Cranston B, et al. Human leukocyte antigen concordance and the transmission risk via breast-feeding of human T cell lymphotropic virus type I. J Infect Dis [Internet]. 2006 [cited 2017 Nov 14];193(2):277–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16362892.
  16. 16.
    Li H, Biggar RJ, Miley WJ, Maloney EM, Cranston B, Hanchard B, et al. Provirus load in breast milk and risk of mother-to-child transmission of human T lymphotropic virus type I. J Infect Dis [Internet]. 2004 [cited 2017 Nov 14];190(7):1275–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15346338.
  17. 17.
    Hino S, Katamine S, Kawase K, Miyamoto T, Doi H, Tsuji Y, et al. Intervention of maternal transmission of HTLV-1 in Nagasaki, Japan. Leukemia [Internet]. 1994 [cited 2017 Nov 14];8 Suppl 1:S68–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8152307.
  18. 18.
    Kashiwagi K, Furusyo N, Nakashima H, Kubo N, Kinukawa N, Kashiwagi S, et al. A decrease in mother-to-child transmission of human T lymphotropic virus type I (HTLV-I) in Okinawa, Japan. Am J Trop Med Hyg [Internet]. 2004 [cited 2017 Nov 14];70(2):158–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14993627.
  19. 19.
    Hisada M, Stuver SO, Okayama A, Li H, Sawada T, Hanchard B, et al. Persistent paradox of natural history of human T lymphotropic virus type I: parallel analyses of Japanese and Jamaican carriers. J Infect Dis [Internet]. 2004 [cited 2017 Nov 14];190(9):1605–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15478065.
  20. 20.
    Maguer-Satta V, Gazzolo L, Dodon M. Human immature thymocytes as target cells of the leukemogenic activity of human T-cell leukemia virus type I. Blood [Internet]. 1995 [cited 2017 Nov 14];86(4):1444–52. Available from: http://www.bloodjournal.org/content/86/4/1444?sso-checked=true.
  21. 21.
    de Thé G, Kazanji M. An HTLV-I/II vaccine: from animal models to clinical trials? J Acquir Immune Defic Syndr Hum Retrovirol [Internet]. 1996 [cited 2017 Nov 14];13 Suppl 1:S191–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8797723.
  22. 22.
    Cleghorn FR, Manns A, Falk R, Hartge P, Hanchard B, Jack N, et al. Effect of human T-lymphotropic virus type I infection on non-Hodgkin’s lymphoma incidence. J Natl Cancer Inst [Internet]. 1995 [cited 2017 Nov 14];87(13):1009–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7629870.
  23. 23.
    Kaplan JE, Osame M, Kubota H, Igata A, Nishitani H, Maeda Y, et al. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Acquir Immune Defic Syndr [Internet]. 1990 [cited 2017 Nov 14];3(11):1096–101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2213510.
  24. 24.
    Murphy EL, Hanchard B, Figueroa JP, Gibbs WN, Lofters WS, Campbell M, et al. Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int J Cancer [Internet]. 1989 [cited 2017 Nov 14];43(2):250–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2917802.
  25. 25.
    Yamaguchi K, Watanabe T. Human T lymphotropic virus type-I and adult T-cell leukemia in Japan. Int J Hematol [Internet]. 2002 [cited 2017 Nov 14];76 Suppl 2:240–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12430931.
  26. 26.
    Bangham CRM, Ratner L. How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol [Internet]. NIH Public Access; 2015 [cited 2017 Nov 14];14:93–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26414684.
  27. 27.
    Satake M, Yamada Y, Atogami S, Yamaguchi K. The incidence of adult T-cell leukemia/lymphoma among human T-lymphotropic virus type 1 carriers in Japan. Leuk Lymphoma [Internet]. 2015 [cited 2017 Nov 14];56(6):1806–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25219595.
  28. 28.
    Phillips AA, Shapira I, Willim RD, Sanmugarajah J, Solomon WB, Horwitz SM, et al. A critical analysis of prognostic factors in North American patients with human T-cell lymphotropic virus type-1-associated adult T-cell leukemia/lymphoma. Cancer [Internet]. 2010 [cited 2017 Nov 14];116(14):3438–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20564100.
  29. 29.
    Tajima K. The 4th nation-wide study of adult T-cell leukemia/lymphoma (ATL) in Japan: estimates of risk of ATL and its geographical and clinical features. The T- and B-cell Malignancy Study Group. Int J Cancer [Internet]. 1990 [cited 2017 Nov 14];45(2):237–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2303290.
  30. 30.
    Bittencourt AL, Vieira M da G, Brites CR, Farre L, Barbosa HS. Adult T-cell leukemia/lymphoma in Bahia, Brazil. Am J Clin Pathol [Internet]. 2007 [cited 2017 Nov 14];128(5):875–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17951212.
  31. 31.
    Barbeau B, Peloponese J-M, Mesnard J-M. Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis. Front Microbiol [Internet]. Frontiers Media SA; 2013 [cited 2017 Nov 14];4:226. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23966985.
  32. 32.
    Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol [Internet]. 1991 [cited 2017 Nov 14];79(3):428–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1751370.
  33. 33.
    Satoh M, Toma H, Sugahara K, Etoh K, Shiroma Y, Kiyuna S, et al. Involvement of IL-2/IL-2R system activation by parasite antigen in polyclonal expansion of CD4+25+ HTLV-1-infected T-cells in human carriers of both HTLV-1 and S. stercoralis. Oncogene [Internet]. 2002 [cited 2017 Nov 14];21(16):2466–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11971181.
  34. 34.
    Gonçalves DU, Proietti FA, Ribas JGR, Araújo MG, Pinheiro SR, Guedes AC, et al. Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin Microbiol Rev [Internet]. 2010 [cited 2015 Feb 18];23(3):577–89. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2901658&tool=pmcentrez&rendertype=abstract.
  35. 35.
    Taylor GP, Matsuoka M. Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene [Internet]. 2005 [cited 2017 Nov 14];24(39):6047–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16155611.
  36. 36.
    Nosaka K, Miyamoto T, Sakai T, Mitsuya H, Suda T, Matsuoka M. Mechanism of hypercalcemia in adult T-cell leukemia: overexpression of receptor activator of nuclear factor kappaB ligand on adult T-cell leukemia cells. Blood [Internet]. 2002 [cited 2017 Nov 14];99(2):634–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11781248.
  37. 37.
    Ogata M, Ogata Y, Kohno K, Uno N, Ohno E, Ohtsuka E, et al. Eosinophilia associated with adult t-cell leukemia: role of interleukin 5 and granulocyte-macrophage colony-stimulating factor. Am J Hematol [Internet]. Wiley Subscription Services, Inc., A Wiley Company; 1998 [cited 2017 Nov 14];59(3):242–5. Available from: http://doi.wiley.com/10.1002/%28SICI%291096-8652%28199811%2959%3A3%3C242%3A%3AAID-AJH11%3E3.0.CO%3B2-O.
  38. 38.
    Stewart DM, Ramanathan R, Mahanty S, Fedorko DP, Janik JE, Morris JC. Disseminated Strongyloides stercoralis infection in HTLV-1-associated adult T-cell leukemia/lymphoma. Acta Haematol [Internet]. Karger Publishers; 2011 [cited 2017 Nov 14];126(2):63–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21474923.
  39. 39.
    Montes M, Sanchez C, Verdonck K, Lake JE, Gonzalez E, Lopez G, et al. Regulatory T cell expansion in HTLV-1 and strongyloidiasis co-infection is associated with reduced IL-5 responses to Strongyloides stercoralis antigen. PLoS Negl Trop Dis [Internet]. Public Library of Science; 2009 [cited 2017 Nov 14];3(6):e456. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19513105.
  40. 40.
    Nicot C. Current views in HTLV-I-associated adult T-cell leukemia/lymphoma. Am J Hematol [Internet]. 2005 [cited 2017 Nov 14];78(3):232–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15726602.
  41. 41.
    Campuzano-Zuluaga G, Pimentel A, Chapman-Fredricks JR, Ramos J. Differential CD30 expression in adult T-cell leukemia-lymphoma subtypes. Retrovirology [Internet]. BioMed Central; 2014 [cited 2017 Nov 14];11(Suppl 1):P129. Available from:  https://doi.org/10.1186/1742-4690-11-S1-P129.
  42. 42.
    Dittus C, Sloan JM. Adult T-cell leukemia/lymphoma. Hematol Oncol Clin N Am [Internet]. 2017 [cited 2017 Nov 14];31(2):255–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28340877.
  43. 43.
    Jabbour M, Tuncer H, Castillo J, Butera J, Roy T, Pojani J, et al. Hematopoietic SCT for adult T-cell leukemia/lymphoma: a review. Bone Marrow Transplant [Internet]. Nature Publishing Group; 2011 [cited 2017 Nov 14];46(8):1039–44. Available from:  https://doi.org/10.1038/bmt.2011.27.
  44. 44.
    Teshima T, Akashi K, Shibuya T, Taniguchi S, Okamura T, Harada M, et al. Central nervous system involvement in adult T-cell leukemia/lymphoma. Cancer [Internet]. 1990 [cited 2017 Nov 14];65(2):327–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2295055.
  45. 45.
    Huang C-T, Lee Y-H, Chow K-C, Yang C-F, Chen PC-H, Hsiao L-T, et al. Adult T-cell leukaemia/lymphoma can mimic other lymphomas in a non-endemic area: dilemmas in diagnosis and treatment. Intern Med J [Internet]. 2014 [cited 2017 Nov 14];44(4):374–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24533861.
  46. 46.
    Karube K, Suzumiya J, Okamoto M, Takeshita M, Maeda K, Sakaguchi M, et al. Adult T-cell lymphoma/leukemia with angioimmunoblastic T-cell lymphomalike features: report of 11 cases. Am J Surg Pathol [Internet]. 2007 [cited 2017 Nov 14];31(2):216–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17255766.
  47. 47.
    Katsuya H, Ishitsuka K, Utsunomiya A, Hanada S, Eto T, Moriuchi Y, et al. Treatment and survival among 1594 patients with ATL. Blood [Internet]. 2015 [cited 2017 Nov 14];126(24):2570–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26361794.
  48. 48.
    Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington W, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol [Internet]. 2009 [cited 2017 Nov 15];27(3):453–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19064971.
  49. 49.
    Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol [Internet]. 1982 [cited 2017 Nov 15];5(6):649–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7165009.
  50. 50.
    Major prognostic factors of patients with adult T-cell leukemia-lymphoma: a cooperative study. Lymphoma Study Group (1984–1987). Leuk Res [Internet]. 1991 [cited 2017 Nov 15];15(2–3):81–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2016910.
  51. 51.
    Takasaki Y, Iwanaga M, Imaizumi Y, Tawara M, Joh T, Kohno T, et al. Long-term study of indolent adult T-cell leukemia-lymphoma. Blood [Internet]. 2010 [cited 2017 Nov 15];115(22):4337–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20348391.
  52. 52.
    Katsuya H, Yamanaka T, Ishitsuka K, Utsunomiya A, Sasaki H, Hanada S, et al. Prognostic index for acute- and lymphoma-type adult T-cell leukemia/lymphoma. J Clin Oncol [Internet]. 2012 [cited 2017 Nov 15];30(14):1635–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22473153.
  53. 53.
    Takasaki Y, Iwanaga M, Tsukasaki K, Kusano M, Sugahara K, Yamada Y, et al. Impact of visceral involvements and blood cell count abnormalities on survival in adult T-cell leukemia/lymphoma (ATLL). Leuk Res [Internet]. 2007 [cited 2017 Nov 15];31(6):751–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17188352.
  54. 54.
    Utsunomiya A, Ishida T, Inagaki A, Ishii T, Yano H, Komatsu H, et al. Clinical significance of a blood eosinophilia in adult T-cell leukemia/lymphoma: a blood eosinophilia is a significant unfavorable prognostic factor. Leuk Res [Internet]. 2007 [cited 2017 Nov 15];31(7):915–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17123603.
  55. 55.
    Pimentel A, Diaz LA, Chapman-Fredricks JR, Ramos JC. CD30 expression is associated with decreased survival in patients with acute and unfavorable chronic types of adult T-cell leukemia-lymphoma. Blood [Internet]. 2013 [cited 2017 Nov 15];122(21). Available from: http://www.bloodjournal.org/content/122/21/4312?sso-checked=true.
  56. 56.
    Phillips A, Fields P, Hermine O, Taylor GP, Delioukina M, Horwitz S, et al. Anti-CCR4 monoclonal antibody KW-0761 (mogamulizumab) or investigator’s choice in subjects with relapsed or refractory adult T-cell leukemia-lymphoma (ATL). Retrovirology [Internet]. BioMed Central; 2015 [cited 2018 Jan 25];12(Suppl 1):P31. Available from:  https://doi.org/10.1186/1742-4690-12-S1-P31.
  57. 57.
    NCCN. Non-Hodgkin Lymphoma (NHL) treatment regimens: adult T-cell leukemia/lymphoma [Internet]. NCCN; 2016 [cited 2017 Nov 15]. Available from: http://www.nccn.org/professionals/physician_gls/pdf/nhl.pdf.
  58. 58.
    Kudo H, Fukushima S, Masuguchi S, Sakai K, Jinnin M, Ihn H. Cutaneous type adult T-cell leukaemia/lymphoma successfully treated with narrowband ultraviolet B phototherapy. Clin Exp Dermatol [Internet]. Blackwell Publishing Ltd; 2012 [cited 2017 Nov 15];37(2):183–4. Available from:  https://doi.org/10.1111/j.1365-2230.2011.04141.x.
  59. 59.
    Takemori N, Hirai K, Onodera R, Saito N, Yokota K, Kinouchi M, et al. Satisfactory remission achieved by PUVA therapy in a case of crisis-type adult T-cell leukaemia/lymphoma with generalized cutaneous leukaemic cell infiltration. Br J Dermatol [Internet]. Blackwell Publishing Ltd; 1995 [cited 2017 Nov 15];133(6):955–60. Available from:  https://doi.org/10.1111/j.1365-2133.1995.tb06933.x.
  60. 60.
    Sawada Y, Shimauchi T, Yamaguchi T, Okura R, Hama-Yamamoto K, Fueki-Yoshioka H, et al. Combination of skin-directed therapy and oral etoposide for smoldering adult T-cell leukemia/lymphoma with skin involvement. Leuk Lymphoma [Internet]. 2013 [cited 2017 Nov 15];54(3):520–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22830614.
  61. 61.
    Gill PS, Harrington W, Kaplan MH, Ribeiro RC, Bennett JM, Liebman HA, et al. Treatment of adult T-cell leukemia–lymphoma with a combination of interferon alfa and zidovudine. N Engl J Med [Internet]. 1995 [cited 2017 Nov 15];332(26):1744–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7760890.
  62. 62.
    Hermine O, Allard I, Lévy V, Arnulf B, Gessain A, Bazarbachi A, et al. A prospective phase II clinical trial with the use of zidovudine and interferon-alpha in the acute and lymphoma forms of adult T-cell leukemia/lymphoma. Hematol J [Internet]. 2002 [cited 2018 Jan 25];3(6):276–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12522449.
  63. 63.
    Bazarbachi A, Plumelle Y, Carlos Ramos J, Tortevoye P, Otrock Z, Taylor G, et al. Meta-analysis on the use of zidovudine and interferon-alfa in adult t-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol [Internet]. 2010 [cited 2017 Nov 15];28(27):4177–4183. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20585095.
  64. 64.
    Barbeau B, Hiscott J, Bazarbachi A, Carvalho E, Jones K, Martin F, et al. Conference highlights of the 16th international conference on human retrovirology: HTLV and related retroviruses, 26–30 June 2013, Montreal, Canada. Retrovirology [Internet]. BioMed Central. 2014 [cited 2017 Nov 15];11(1):19. Available from: http://retrovirology.biomedcentral.com/articles/10.1186/1742-4690-11-19.
  65. 65.
    Hodson A, Crichton S, Montoto S, Mir N, Matutes E, Cwynarski K, et al. Use of zidovudine and interferon alfa with chemotherapy improves survival in both acute and lymphoma subtypes of adult t-cell leukemia/lymphoma. J Clin Oncol [Internet]. 2011 [cited 2017 Nov 15];29(35):4696–4701. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22042945.
  66. 66.
    Bazarbachi A, El-Sabban ME, Nasr R, Quignon F, Awaraji C, Kersual J, et al. Arsenic trioxide and interferon-alpha synergize to induce cell cycle arrest and apoptosis in human T-cell lymphotropic virus type I-transformed cells. Blood [Internet]. 1999 [cited 2017 Nov 15];93(1):278–283. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9864171.
  67. 67.
    Hermine O, Dombret H, Poupon J, Arnulf B, Lefrère F, Rousselot P, et al. Phase II trial of arsenic trioxide and alpha interferon in patients with relapsed/refractory adult T-cell leukemia/lymphoma. Hematol J [Internet]. 2004 [cited 2017 Nov 15];5(2):130–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15048063.
  68. 68.
    Oliveira PD, Farre L, Bittencourt AL, Oliveira PD, Farre L, Bittencourt AL. Adult T-cell leukemia/lymphoma. Rev Assoc Med Bras [Internet]. Associação Médica Brasileira; 2016 [cited 2017 Nov 14];62(7):691–700. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-42302016000700691&lng=en&tlng=en.
  69. 69.
    Utsunomiya A, Choi I, Chihara D, Seto M. Recent advances in the treatment of adult T-cell leukemia-lymphomas. Cancer Sci [Internet]. 2015 [cited 2017 Nov 14];106(4):344–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25613789.
  70. 70.
    Di Venuti G, Nawgiri R, Foss F. Denileukin diftitox and hyper-CVAD in the treatment of human T-cell lymphotropic virus 1-associated acute T-cell leukemia/lymphoma. Clin Lymphoma [Internet]. 2003 [cited 2017 Nov 15];4(3):176–178. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14715100.
  71. 71.
    Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med [Internet]. Massachusetts Medical Society; 2010 [cited 2017 Nov 15];363(19):1812–1821. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1002965.
  72. 72.
    Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol [Internet]. 2012 [cited 2017 Nov 15];30(18):2190–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22614995.
  73. 73.
    Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol [Internet]. 2012 [cited 2017 Nov 15];30(18):2183–2189. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22454421.
  74. 74.
    Horwitz SM, Advani RH, Bartlett NL, Jacobsen ED, Sharman JP, O’Connor OA, et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood [Internet]. 2014 [cited 2017 Nov 15];123(20):3095–3100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24652992.
  75. 75.
    Duvic M, Tetzlaff MT, Gangar P, Clos AL, Sui D, Talpur R. Results of a phase II trial of brentuximab vedotin for CD30 + cutaneous T-cell lymphoma and lymphomatoid papulosis. J Clin Oncol [Internet]. 2015 [cited 2017 Nov 15];33(32):3759–3765. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26261247.
  76. 76.
    Jacobsen ED, Sharman JP, Oki Y, Advani RH, Winter JN, Bello CM, et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood [Internet]. 2015 [cited 2017 Nov 15];125(9):1394–1402. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25573987.
  77. 77.
    Fanale MA, Horwitz SM, Forero-Torres A, Bartlett NL, Advani RH, Pro B, et al. Brentuximab vedotin in the front-line treatment of patients with CD30 + peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol [Internet]. 2014 [cited 2017 Nov 15];32(28):3137–3143. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25135998.
  78. 78.
    Fanale MA, Horwitz SM, Forero-Torres A, Bartlett NL, Advani RH, Pro B, et al. Five-year outcomes for frontline brentuximab vedotin with CHP for CD30-expressing peripheral T-cell lymphomas. Blood [Internet]. 2018 [cited 2018 Aug 14];131(19):2120–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29507077.
  79. 79.
    Thomas Manley M. ECHELON-2: a comparison of brentuximab vedotin and CHP with standard-of-care CHOP in the treatment of patients with CD30-positive mature T-cell lymphomas - ClinicalTrials.gov [Internet]. [cited 2017 Nov 15]. Available from: https://clinicaltrials.gov/ct2/show/NCT01777152.
  80. 80.
    Owen A. O’Connor, Barbara Pro, Tim Illidge, Lorenz H. Trumper, Emily K. Larsen DAK. Phase 3 trial of brentuximab vedotin and CHP versus CHOP in the frontline treatment of patients (pts) with CD30+ mature T-cell lymphomas (MTCL). Abstract TPS8612. J Clin Oncol [Internet]. 2014;32:5s. Available from: http://ascopubs.org/doi/abs/10.1200/jco.2014.32.15_suppl.tps8612.
  81. 81.
    Alex F. Herrera M. Brentuximab vedotin and combination chemotherapy in treating patients with CD30-positive peripheral T-cell lymphoma - ClinicalTrials.gov - NCT03113500 [Internet]. [cited 2017 Nov 15]. Available from: https://clinicaltrials.gov/ct2/show/NCT03113500.
  82. 82.
    Ishida T, Utsunomiya A, Iida S, Inagaki H, Takatsuka Y, Kusumoto S, et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res [Internet]. 2003 [cited 2017 Nov 15];9(10 Pt 1):3625–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14506150.
  83. 83.
    Subramaniam JM, Whiteside G, McKeage K, Croxtall JC. Mogamulizumab. Drugs [Internet]. 2012 [cited 2017 Nov 15];72(9):1293–1298. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22686619.
  84. 84.
    Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol [Internet]. 2012 [cited 2017 Nov 15];30(8):837–842. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22312108.
  85. 85.
    Ishida T, Jo T, Takemoto S, Suzushima H, Uozumi K, Yamamoto K, et al. Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma: a randomized phase II study. Br J Haematol [Internet]. 2015 [cited 2017 Nov 15];169(5):672–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25733162.
  86. 86.
    Fuji S, Inoue Y, Utsunomiya A, Moriuchi Y, Uchimaru K, Choi I, et al. Pretransplantation anti-CCR4 antibody mogamulizumab against adult T-cell leukemia/lymphoma is associated with significantly increased risks of severe and corticosteroid-refractory graft-versus-host disease, nonrelapse mortality, and overall mortality. J Clin Oncol [Internet]. 2016 [cited 2017 Nov 15];34(28):3426–3433. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27507878.
  87. 87.
    Rodig SJ, Abramson JS, Pinkus GS, Treon SP, Dorfman DM, Dong HY, et al. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res [Internet]. 2006 [cited 2017 Nov 16];12(23):7174–7179. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17145843.
  88. 88.
    Jiang L, Yuan CM, Hubacheck J, Janik JE, Wilson W, Morris JC, et al. Variable CD52 expression in mature T cell and NK cell malignancies: implications for alemtuzumab therapy. Br J Haematol [Internet]. 2009 [cited 2017 Nov 16];145(2):173–179. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19236377.
  89. 89.
    Gallamini A, Zaja F, Patti C, Billio A, Specchia MR, Tucci A, et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood [Internet]. 2007 [cited 2017 Nov 16];110(7):2316–2323. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17581918.
  90. 90.
    Sharma K, Janik JE, O’Mahony D, Stewart D, Pittaluga S, Stetler-Stevenson M, et al. Phase II Study of Alemtuzumab (CAMPATH-1) in Patients with HTLV-1-Associated Adult T-cell Leukemia/lymphoma. Clin Cancer Res [Internet]. American Association for Cancer Research; 2017 [cited 2018 Aug 14];23(1):35–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27486175.
  91. 91.
    Berkowitz JL, Janik JE, Stewart DM, Jaffe ES, Stetler-Stevenson M, Shih JH, et al. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin Immunol [Internet]. 2014 [cited 2017 Nov 16];155(2):176–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25267440.
  92. 92.
    Ceesay MM, Matutes E, Taylor GP, Fields P, Cavenagh J, Simpson S, et al. Phase II study on combination therapy with CHOP-Zenapax for HTLV-I associated adult T-cell leukaemia/lymphoma (ATLL). Leuk Res [Internet]. 2012 Jul [cited 2017 Nov 16];36(7):857–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22209076.
  93. 93.
    Mehta-Shah N, Horwitz SM. Lenalidomide in adult T-cell leukemia/lymphoma. J Clin Oncol [Internet]. 2016 [cited 2017 Nov 15];34(34):4066–7. Available from: http://ascopubs.org/doi/10.1200/JCO.2016.69.4505.
  94. 94.
    Ogura M, Imaizumi Y, Uike N, Asou N, Utsunomiya A, Uchida T, et al. Lenalidomide in relapsed adult T-cell leukaemia-lymphoma or peripheral T-cell lymphoma (ATLL-001): a phase 1, multicentre, dose-escalation study. Lancet Haematol [Internet]. 2016 [cited 2017 Nov 15];3(3):e107–18. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2352302615002847.
  95. 95.
    Ishida T, Fujiwara H, Nosaka K, Taira N, Abe Y, Imaizumi Y, et al. Multicenter phase II study of lenalidomide in relapsed or recurrent adult T-cell leukemia/lymphoma: ATLL-002. J Clin Oncol [Internet]. 2016 Dec [cited 2017 Nov 15];34(34):4086–93. Available from: http://ascopubs.org/doi/10.1200/JCO.2016.67.7732.
  96. 96.
    Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non-hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res [Internet]. American Association for Cancer Research; 2011 [cited 2017 Nov 15];17(13):4232–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21540239.
  97. 97.
    Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MGM, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res [Internet]. American Association for Cancer Research; 2013 [cited 2017 Nov 15];19(13):3462–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23674495.
  98. 98.
    Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med [Internet]. Massachusetts Medical Society; 2012 [cited 2017 Nov 15];366(26):2517–9. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMe1205943.
  99. 99.
    Rossille D, Gressier M, Damotte D, Maucort-Boulch D, Pangault C, Semana G, et al. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-Cell lymphoma: results from a French multicenter clinical trial. Leukemia [Internet]. 2014 [cited 2017 Nov 15];28(12):2367–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24732592.
  100. 100.
    Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood [Internet]. American Society of Hematology; 2015 [cited 2017 Nov 15];126(19):2193–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26239088.
  101. 101.
    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s Lymphoma. N Engl J Med [Internet]. 2015 [cited 2017 Nov 15];372(4):311–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25482239.
  102. 102.
    Shimauchi T, Kabashima K, Nakashima D, Sugita K, Yamada Y, Hino R, et al. Augmented expression of programmed death-1 in both neoplastic and non-neoplastic CD4+ T-cells in adult T-cell leukemia/lymphoma. Int J Cancer [Internet]. 2007 [cited 2017 Nov 15];121(12):2585–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17721918.
  103. 103.
    Kozako T, Yoshimitsu M, Fujiwara H, Masamoto I, Horai S, White Y, et al. PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia [Internet]. 2009 [cited 2017 Nov 15];23(2):375–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18830259.
  104. 104.
    Miyoshi H, Kiyasu J, Kato T, Yoshida N, Shimono J, Yokoyama S, et al. PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma. Blood [Internet]. 2016 [cited 2017 Nov 15];128(10):1374–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27418641.
  105. 105.
    National Cancer Institute. Nivolumab in Treating Patients With HTLV-Associated T-Cell Leukemia/Lymphoma - ClinicalTrials.gov - NCT02631746 [Internet]. [cited 2017 Nov 16]. Available from: https://clinicaltrials.gov/ct2/show/NCT02631746.
  106. 106.
    Ratner L, Waldmann TA, Janakiram M, Brammer JE. Rapid progression of adult T-cell leukemia–lymphoma after PD-1 inhibitor therapy. N Engl J Med [Internet]. Massachusetts Medical Society; 2018 [cited 2018 Aug 14];378(20):1947–8. Available from: http://www.nejm.org/doi/10.1056/NEJMc1803181.
  107. 107.
    O’Connor OA, Heaney ML, Schwartz L, Richardson S, Willim R, MacGregor-Cortelli B, et al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol [Internet]. 2006 [cited 2017 Nov 16];24(1):166–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16330674.
  108. 108.
    Hasegawa H, Yamada Y, Tsukasaki K, Mori N, Tsuruda K, Sasaki D, et al. LBH589, a deacetylase inhibitor, induces apoptosis in adult T-cell leukemia/lymphoma cells via activation of a novel RAIDD-caspase-2 pathway. Leukemia [Internet]. Nature Publishing Group; 2011 [cited 2017 Nov 16];25(4):575–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21242994.
  109. 109.
    Dang NH, Pro B, Hagemeister FB, Samaniego F, Jones D, Samuels BI, et al. Phase II trial of denileukin diftitox for relapsed/refractory T-cell non-Hodgkin lymphoma. Br J Haematol [Internet]. 2007 [cited 2017 Nov 16];136(3):439–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17233846.
  110. 110.
    Foss FM, Sjak-Shie N, Goy A, Jacobsen E, Advani R, Smith MR, et al. A multicenter phase II trial to determine the safety and efficacy of combination therapy with denileukin diftitox and cyclophosphamide, doxorubicin, vincristine and prednisone in untreated peripheral T-cell lymphoma: the CONCEPT study. Leuk Lymphoma [Internet]. 2013 [cited 2017 Nov 16];54(7):1373–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23278639.
  111. 111.
    Di Venuti G, Nawgiri R, Foss F. Denileukin diftitox and hyper-CVAD in the treatment of human T-cell lymphotropic virus 1-associated acute T-cell leukemia/lymphoma. Clin Lymphoma [Internet]. 2003 Dec [cited 2017 Nov 16];4(3):176–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14715100.
  112. 112.
    Suehiro Y. HTLV-1-targeted immunotherapy. Rinsho Ketsueki [Internet]. 2016 [cited 2018 Jan 25];57(10):2250–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27795537.
  113. 113.
    Youko Suehiro. Novel autologous dendritic cell vaccine therapy targeting HTLV-1 specific antigen Combined with anti-CCR4 antibody for previously treated patients with adult T-cell leukemia. A phase Ia/Ib study - UMIN Clinical Trials Registry [Internet]. Available from: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000019348.
  114. 114.
    Tsukasaki K, Maeda T, Arimura K, Taguchi J, Fukushima T, Miyazaki Y, et al. Poor outcome of autologous stem cell transplantation for adult T cell leukemia/lymphoma: a case report and review of the literature. Bone Marrow Transplant [Internet]. 1999 [cited 2017 Nov 16];23(1):87–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10037056.
  115. 115.
    Borg A, Yin JA, Johnson PR, Tosswill J, Saunders M, Morris D. Successful treatment of HTLV-1-associated acute adult T-cell leukaemia lymphoma by allogeneic bone marrow transplantation. Br J Haematol [Internet]. 1996 [cited 2017 Nov 16];94(4):713–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8826899.
  116. 116.
    Japan. HCT in. Annual Report of Nationwide Survey 2013. The Japanese Data Center for Hematopoietic Cell Transp lantation/The Japan Society for Hematopoietic Cell Transplantation 2014. 2014.Google Scholar
  117. 117.
    Kanda J, Hishizawa M, Utsunomiya A, Taniguchi S, Eto T, Moriuchi Y, et al. Impact of graft-versus-host disease on outcomes after allogeneic hematopoietic cell transplantation for adult T-cell leukemia: a retrospective cohort study. Blood [Internet]. 2012 [cited 2017 Nov 16];119(9):2141–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22234682.
  118. 118.
    Ishida T, Hishizawa M, Kato K, Tanosaki R, Fukuda T, Taniguchi S, et al. Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia-lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood [Internet]. 2012 [cited 2017 Nov 16];120(8):1734–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22689862.
  119. 119.
    Bazarbachi A, Cwynarski K, Boumendil A, Finel H, Fields P, Raj K, et al. Outcome of patients with HTLV-1-associated adult T-cell leukemia/lymphoma after SCT: a retrospective study by the EBMT LWP. Bone Marrow Transplant [Internet]. 2014 [cited 2017 Nov 16];49(10):1266–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25029232.
  120. 120.
    University Hospital Center of Martinique. High Risk Adult T-cell Leukemia/Lymphoma (ATLL-HR) and Allogeneic Transplant - ClinicalTrials.gov - NCT01941680 [Internet]. [cited 2017 Nov 16]. Available from: https://clinicaltrials.gov/ct2/show/NCT01941680.
  121. 121.
    Schmitz N, Trümper L, Ziepert M, Nickelsen M, Ho AD, Metzner B, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood [Internet]. American Society of Hematology; 2010 [cited 2018 Jan 21];116(18):3418–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20660290.
  122. 122.
    Hishizawa M, Kanda J, Utsunomiya A, Taniguchi S, Eto T, Moriuchi Y, et al. Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study. Blood [Internet]. 2010 [cited 2017 Nov 16];116(8):1369–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20479287.
  123. 123.
    Salles F, Bacellar A, Amorim M, Orge G, Sundberg M, Lima M, et al. Treatment of strongyloidiasis in HTLV-1 and Strongyloides stercoralis coinfected patients is associated with increased TNFα and decreased soluble IL2 receptor levels. Trans R Soc Trop Med Hyg [Internet]. 2013 [cited 2017 Nov 15];107(8):526–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23843560.
  124. 124.
    Plumelle Y, Edouard A. Strongyloides stercoralis in T-cell leukemia/lymphoma in adults and acquired immunodeficiency syndrome. La Rev Med interne [Internet]. 1996 [cited 2017 Nov 15];17(2):125–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8787083.
  125. 125.
    Ratner L, Grant C, Zimmerman B, Fritz J, Weil G, Denes A, et al. Effect of treatment of Strongyloides infection on HTLV-1 expression in a patient with adult T-cell leukemia. Am J Hematol [Internet]. NIH Public Access; 2007 [cited 2017 Nov 15];82(10):929–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17617788.
  126. 126.
    Gabet A-S, Mortreux F, Talarmin A, Plumelle Y, Leclercq I, Leroy A, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene [Internet]. 2000 [cited 2017 Nov 15];19(43):4954–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11042682.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Hematology and OncologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Medicine, Division of Hematology and OncologyUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations